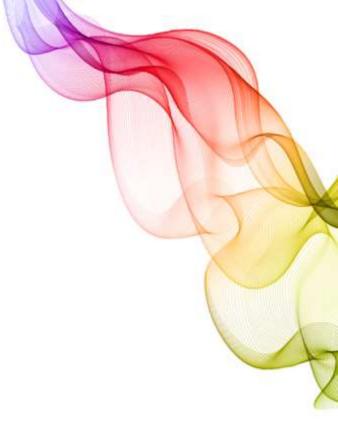


Pulmonary Hypertension

due to Left Heart Disease

IRNIZARIFKA, MD


Working Group on Heart Failure and Pulmonary Hypertension Cardiologist of Tarakan General Hospital, North Kalimantan

This slides is courtesy of Working Group on Heart Failure and Pulmonary Hypertension

Just comorbid.....?

"Cause and effect".....?

PH Definition

The current hemodynamic definition of PAH is:

Mean Pulmonary Artery Pressure (mPAP) greater than 25 mm Hg;

Pulmonary Capillary Wedge Pressure (PCWP), Left Atrial Pressure, or Left Ventricular end-diastolic Pressure (LVEDP) less than or equal to 15 mm Hg;

Pulmonary Vascular Resistance (PVR) greater than 3 Wood units

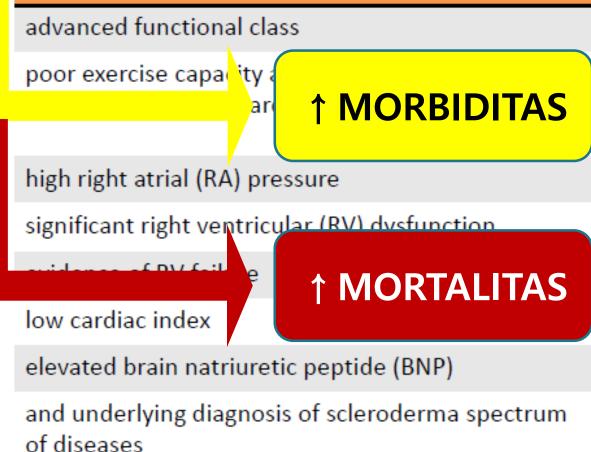
Haemodynamic definitions of pulmonary hypertension

Definition	Charactéristics*	Clinical group(s) ^b
PH	PAPm ≥25 mmHg	All
Pre-capillary PH	PAPm ≥25 mmHg PAWP ≤15 mmHg	 Pulmonary arterial hypertension PH due to lung diseases Chronic thromboembolic PH PH with unclear and/or multifactorial mechanisms
Post-capillary PH Isolated post-capillary PH (Ipc-PH) Combined post-capillary and pre-capillary PH (Cpc-PH)	PAPm ≥25 mmHg PAWP >15 mmHg DPG <7 mmHg and/or PVR ≤3 WU ^c DPG ≥7 mmHg and/or PVR >3 WU ^c	 PH due to left heart disease PH with unclear and/or multifactorial mechanisms

CO = cardiac output; DPG = diastolic pressure gradient (diastolic PAP - mean PAWP); mPAP = mean pulmonary arterial pressure; PAWP = pulmonary arterial wedge pressure; PH = pulmonary hypertension; PVR = pulmonary vascular resistance; WU = Wood units.

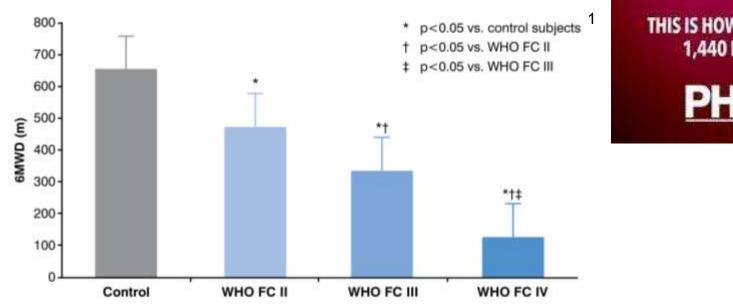
^aAll values measured at rest; see also section 7. ^bAccording to Table 4. Wood Units are preferred to dynes.s.cm⁻⁵.

www.escardio.org


European Heart Journal 2016:37:67-119 -doi:10.1093/eurhearti/ehv317 European Respiratory Journal 2015 46: 903-975;

WHY IT IS IMPORTANT ??

PROGNOSIS


Predictors of a poor prognosis include:

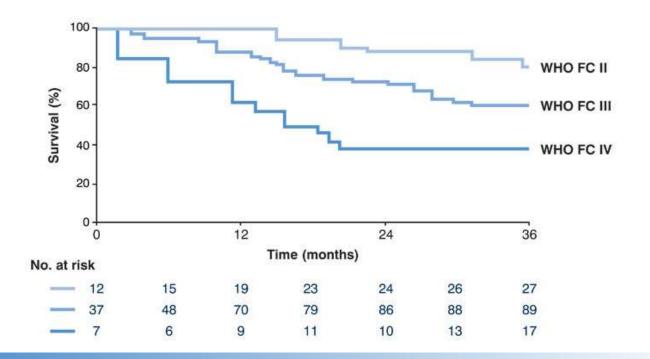
6 minute walk test (6-MWT)

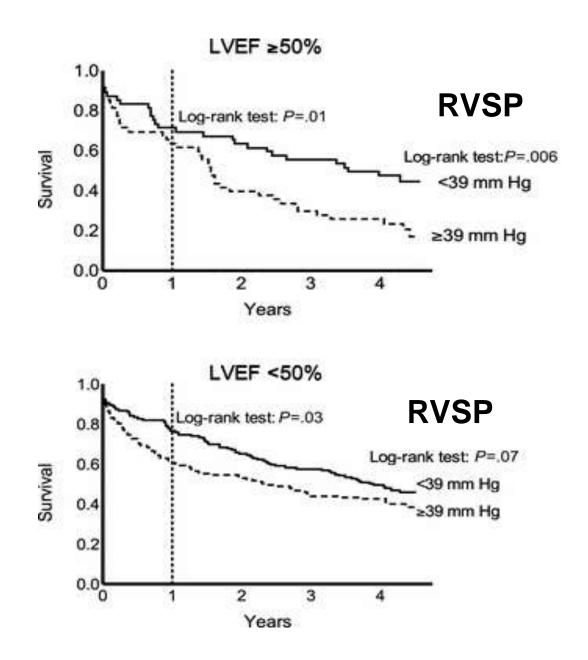
- Measure of patients' functional limitations
- Simple, inexpensive, convenient
- Correlate with WHO FC

6MWD compared with functional class

#1

UNWRAP A STRAW.


#2 HOLD YOUR NOSE.

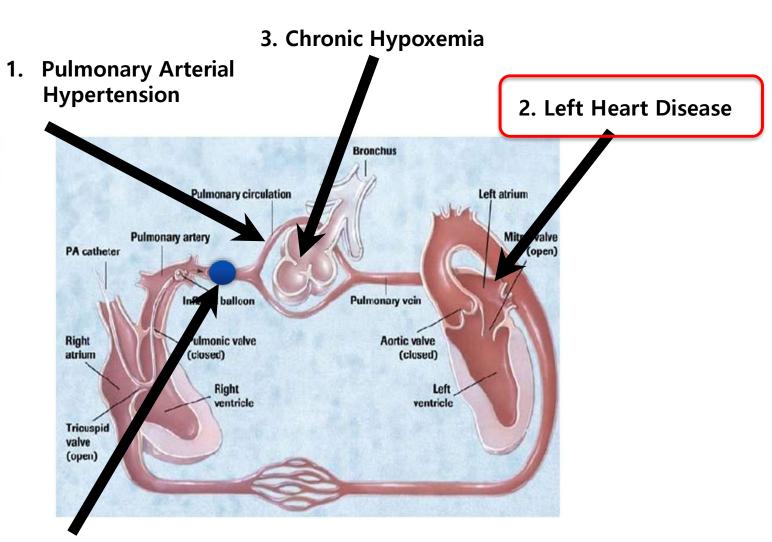

#3

Functional class and survival

Even with advanced medical therapy, patients in WHO FC IV continue to have extremely poor survival rates.

Survival according to functional class²

Independent Predictor of mortality


Comprehensive clinical classification of pulmonary hypertension

1. Pulmonary arterial hypertension 1.1 Idiopathic	3. Pulmonary hypertension due to lung diseases and/or hypoxia			
 1.2 Heritable 1.2.1 BMPR2 mutation 2.2 Other mutations 1.3 Drugs and toxins induced 1.4 Associated with: 4.1 Connective tissue disease 4.2 human immunodeficiency virus (HIV) infection 4.3 Portal hypertension 4.4 Congenital heart disease (Table 5) 4.5 Schistosomiasis 1'. Pulmonary veno-occlusive disease and/or 	 3.1 Chronic obstructive pulmonary disease 3.2 Interstitial lung disease 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 3.4 Sleep-disordered breathing 3.5 Alveolar hypoventilation disorders 3.6 Chronic exposure to high altitude 3.7 Developmental lung diseases (Web Table III) 			
	4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions			
pulmonary capillary haemangiomatosis	4.1 Chronic thromboembolic pulmonary hypertension			
1'.1 Idiopathic 1'.2 Heritable 1'.2.1 EIF2AK4 mutation 1'.2.2 Other mutations 1'.3 Drugs, toxins and radiation induced	 4.2 Other pulmonary artery obstructions 4.2.1 Angiosarcoma 4.2.2 Other intravascular tumors 4.2.3 Arteritis 4.2.4 Congenital pulmonary arteries stenoses 4.2.5 Parasites (hydatidosis) 			
1'.4 Associated with: 1'.4.1 Connective tissue disease 1'.4.2 HIV infection	5. Pulmonary hypertension with unclear and/or multifactorial mechanisms			
 1". Persistent pulmonary hypertension of the newborn 2. Pulmonary hypertension due to left heart disease 2.1 Left ventricular systolic dysfunction 2.2 Left ventricular diastolic dysfunction 2.3 Valvular disease 2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 	 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension 			
2.5 Congenital/acquired pulmonary veins stenosis	ERS EUROPEAN RESPIRATORY SOCIETY			
www.escardio.org	EUROPEAN			

www.escardio.org

European Heart Journal 2016:37;67-119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975;

CARDIOLOGYS

4. Thromboembolic

5. Miscelaneous

-Sarcoid, fibrosing mediastinitis

Group 2 Pulmonary Hypertension

- PH is a common complication of LHDs (PH-LHD), frequently occurring as a 'symptom' of the underlying condition and often related to disease severity.
- When present, PH-LHD results in more severe symptoms and worse exercise tolerance and exerts a negative impact on outcome.
- The **true prevalence** of PH-LHD remains **Unknown**, mostly because the definition of PH in epidemiological studies has been based on echocardiography, with a variety of cut-off values.

European Heart Journal 2016 37:67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975

Group 2 Pulmonary Hypertension

- The **prevalence of PH** in patients with chronic HF **increases with the progression of functional class** impairment.
- Up to 60% of patients with severe left ventricular systolic dysfunction and up to 70% of patients with HFpEF may present with PH.
- In left-sided valvular diseases, the prevalence of PH increases with the severity of the defect and of the symptoms.
- PH can be found in virtually all patients with severe symptomatic mitral valve disease and in up to 65% of those with symptomatic aortic stenosis.

European Heart Journal 2016;37:67–119 -doi:10.1093/eurhearti/ehv317 European Respiratory Journal 2015 46: 903-975:

PH Epidemiology in NCCHK

2008	ATRIAL SEPTAL DEFECT	1
	VENTRICULAR SEPTAL DEFECT	0
	MITRAL STENOSIS AND TRICUSPID REGURGITATION	4
	CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION	0
	PATENT DUCTUS ARTERIOSUS	1
	PRIMARY PULMONARY HYPERTENSION	23
	TOTAL	28

Under-diagnosed???

	PATENT DUCTUS ARTERIOSUS PRIMARY PULMONARY HYPERTENSION TOTAL	0 13 20
2010	ATRIAL SEPTAL DEFECT VENTRICULAR SEPTAL DEFECT MITRAL STENOSIS AND TRICUSPID REGURGITATION CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION PATENT DUCTUS ARTERIOSUS PRIMARY PULMONARY HYPERTENSION	2 0 3 0 1 12
	TOTAL	15

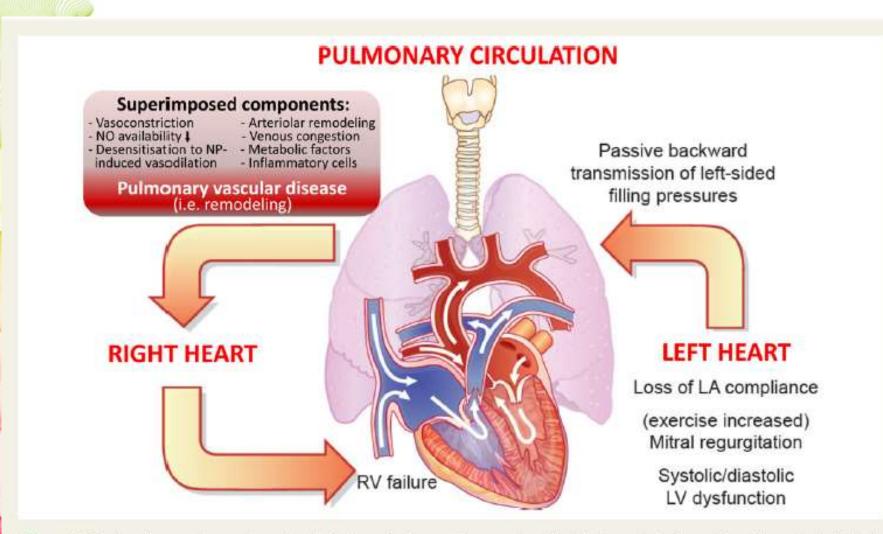
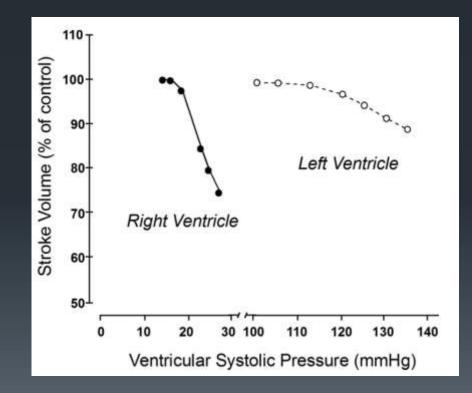
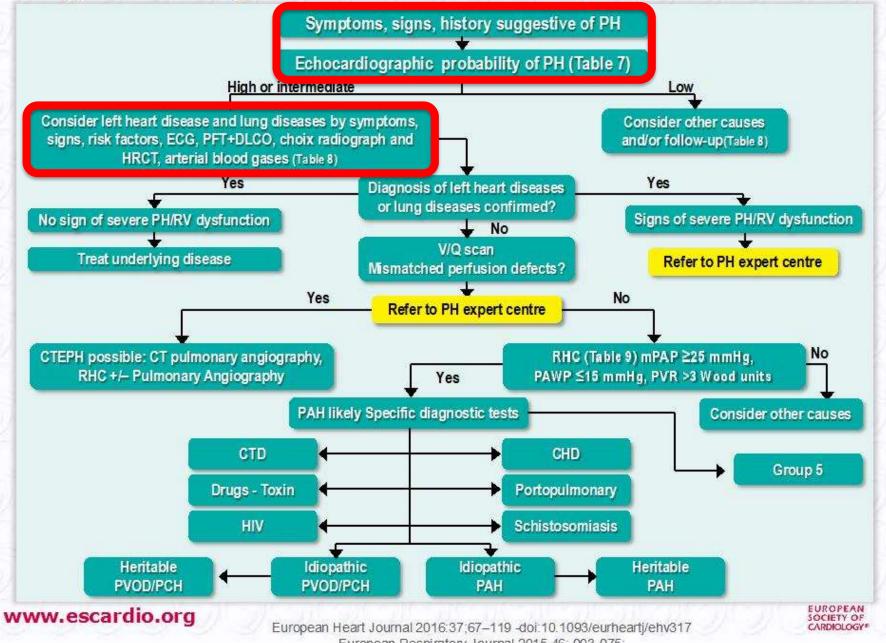



Figure 1 Cardiopulmonary interaction and pathobiology of pulmonary hypertension (PH) in left ventricular heart failure. Shown is (i) the backward transmission of elevated left ventricular filling pressures into the pulmonary circulation (*post-capillary haemodynamic profile*), (ii) potential superimposed components contributing to the extent of PH (leading to a *pre-capillary component*),¹¹ which may be associated with (iii) pulmonary vascular remodelling in some patients, thus leading to (iv) right ventricular strain and dysfunction over time. Right ventricular (RV) dilation and increase in wall stress/tension (internal RV afterload) result in elevated myocardial oxygen consumption, which with concomitant reduction in coronary perfusion gradient leads to RV ischaemia and progressive RV failure.


RV – PA coupling

RV differs from LV

- Well suited accommodate an increase in volume load, sensitive to afterload
- Acute pressure overload causes great reduction in SV
- Even mild PH led uncoupling of RV-PA
- Chronically, RV may adapt with hypertrophy
- RV output reduction may lead to LV underfilling in advanced HF

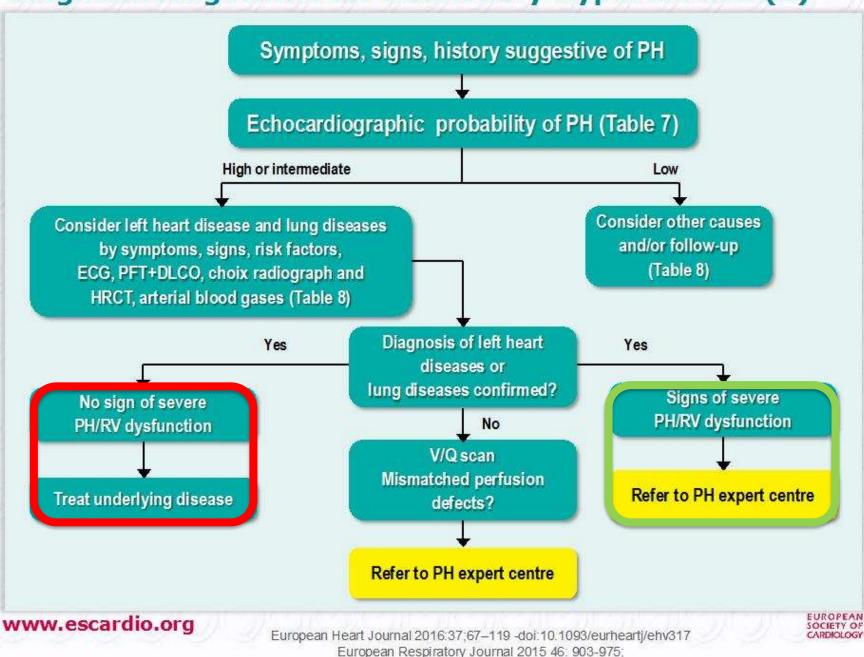
Diagnostic Algorithm for Pulmonary Hypertension

European Respiratory Journal 2015 46: 903-975;

Table 8AEchocardiographic probability ofpulmonary hypertension in symptomatic patients witha suspicion of pulmonary hypertension

Peak tricuspid regurgitation velocity (m/s)	Presence of other echo 'PH signs'ª	Echocardiographic probability of pulmonary hypertension	
≤2.8 or not measurable	No	Low	
≤2.8 or not measurable	Yes	Intermediate	
2.9–3.4	No		
2.9–3.4	Yes		
>3.4	Not required	High	

Table 8BEchocardiographic signs suggestingpulmonary hypertension used to assess the probabilityof pulmonary hypertension in addition to tricuspidregurgitation velocity measurement in Table 8A


A: The ventricles [*]	B: Pulmonary artery ^a	C: Inferior vena cava and right atrium ^a
Right ventricle/ left ventricle basal diameter ratio >1.0	Right ventricular outflow Doppler acceleration time <105 msec and/or midsystolic notching	Inferior cava diameter >21 mm with decreased inspiratory collapse (<50 % with a sniff or <20 % with quiet inspiration)
Flattening of the interventricular septum (left ventricular eccentricity index >1.1 in systole and/or diastole)	Early diastolic pulmonary regurgitation velocity >2.2 m/sec	Right atrial area (end-systole) >18 cm²
	PA diameter >25 mm.	

www.escardio.org

European Heart Journal 2016;37:67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975;

Diagnostic Algorithm for Pulmonary Hypertension (1)

Diagnostic strategy

Recommendations	Class	Level
Echocardiography is recommended as a first-line non-invasive diagnostic investigation in case of suspicion of PH.	I	C
Ventilation/perfusion or perfusion lung scan is recommended in patients with unexplained PH to exclude CTEPH.	I	C
Contrast CT angiography of the PA is recommended in the work-up of patients with CTEPH.	I	C
Routine biochemistry, haematology, immunology, HIV testing and thyroid function tests are recommended in all patients with PAH to identify the specific associated condition.	I	C
Abdominal ultrasound is recommended for the screening of portal hypertension.	I	C
Lung function test with DLCO is recommended in the initial evaluation of patients with PH.	I	C
High-resolution CT should be considered in all patients with PH.	IIa	C
Pulmonary angiography should be considered in the work-up of patients with CTEPH.	IIa	C
Open or thoracoscopic lung biopsy is not recommended in patients with PAH.	III	C

European Heart Journal 2016:37;67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975;

ERS EUROPEAN RESPIRATORY SOCIETY

EUROPEAN SOCIETY OF CARDIOLOGY®

Examples of key factors suggestive of Group 2 pulmonary hypertension

Clinical presentation	Echocardiography	Other features
Age >65 years	 Structural left heart abnormality Disease of left heart valves LA enlargement (>4.2 cm) Bowing of the IAS to the right LV dysfunction Concentric LV hypertrophy and/or increased LV mass 	ECG • LVH and/or LAH • AF/Afib • LBBB • Presence of Q waves
Symptoms of left heart failure	Doppler indices of increased filling pressures • Increased E/e' • >Type 2-3 mitral flow abnormality	Other imaging Kerley B lines Pleural effusion Pulmonary oedema LA enlargement
Features of metabolic syndrome	Absence of: • RV dysfunction • Mid systolic notching of the PA flow • Pericardial effusion	
History of heart disease (past or current)		
Persistent atrial fibrillation		

AF = atrial flutter; Afib = atrial fibrillation; ECG = electrocardiogram; IAS = inter-atrial septum; LA = left atrium; LAH = left anterior hemiblock; LBBB= left bundle branch block; LV = left ventricle; ERS EUROPEAN RESPIRATORY SOCIETY

LVH = left ventricular hypertrophy; PA = pulmonary artery; RV = right ventricle.

www.escardio.org

SOCIETY OF

Table 2 Results of non-invasive diagnostic tests may be suggestive of either pulmonary arterial hypertension or pulmonary hypertension associated with left heart disease

	Suggestive of PAH (Nice group 1)	Suggestive of PH-LHD (Nice group 2)
a. Clinical features	Younger age, familial cases, bendopnea ^a , risk factors for PAH: CTD, CHD, severe liver disease, portal hypertension, HIV	Older age, hypertension, diabetes, CAD, BMI > 30, pulmonary congestion, history of pulmonary oedema, orthopnoea
b. ECG	RV hypertrophy, right axis, RV strain	LV hypertrophy (Sokolow–Lyon index: S in V1 + R in V6), left axis, atrial fibrillation
c. ECHO [⊳]	No signs of LHD, PASP elevated, RV > LV, RV hypertrophy/ dysfunction (TAPSE), RVOT notching ^c , small LA, dilated IVC	Enlarged LA, LV hypertrophy, signs of systolic (EF) and/ordiastolic (E/A, DT, E/E') LV dysfunction, valvular disease
d. Chest X-ray	Enlarged right heart chambers, dilated PA, peripheral PA pruning	Pulmonary congestion, Kerley B lines, pleural effusions, enlargement of left heart chambers
e. PFT/DLCO	Normal/mild obstructive spirometry, normal or moderately decreased DLCO ^d , low p _c CO ₂ (≤36 mmHg) ^e	Normal/obstructive spirometry, normal DLCO (may be decreased due to comorbid COPD), high pcCO2 (>36 mmHg) ^e
f. Biomarkers	BNP/NTproBNP elevated (not discriminate between Groups 1 and 2)	BNP/NTproBNP elevated (not discriminate between group 1 and 2)
g. CPET	Low P _{ET} CO ₂ at AT, decreasing during exercise; high VE/VCO ₂ , increasing during exercise	P _{ET} CO ₂ at AT normal or slightly lowered, not decreasing during exercise, VE/VCO ₂ not increasing during exercise
h. HR-CT	To diagnose or rule out parenchymal lung disease (not discriminate between Groups 1 and 2)	To diagnose or rule out parenchymal lung disease (not discriminate between Groups 1 and 2)
i. V/Q scan	To diagnose or rule out CTEPH (not discriminate between Groups 1 and 2)	To diagnose or rule out CTEPH (not discriminate between Groups 1 and 2)

HFpEF or PAH ??

I mu lun ee di

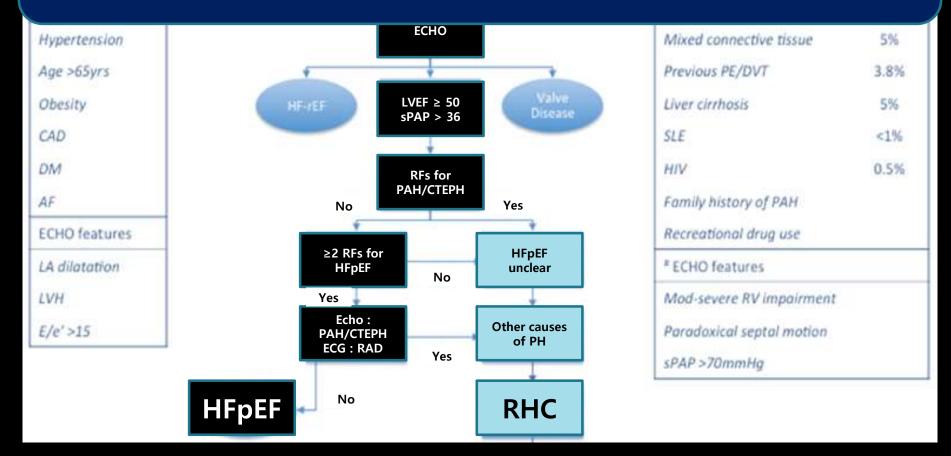
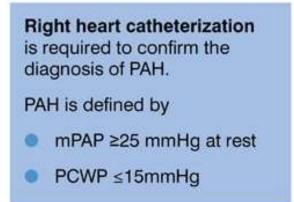
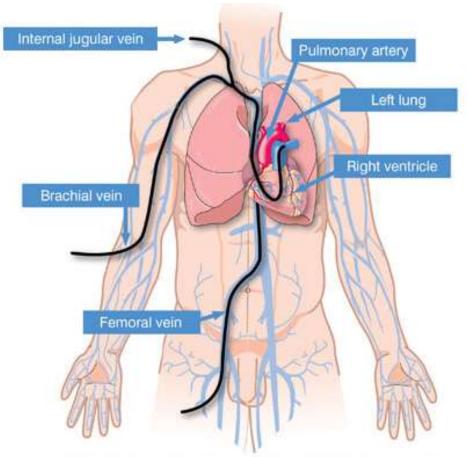


Table 9Diagnostic management suggested according to echocardiographic probability of pulmonary hypertension inpatients with symptoms compatible with pulmonary hypertension, with or without risk factors for pulmonary arterialhypertension or chronic thromboembolic pulmonary hypertension

Echocardiographic probability of PH	Without risk factors or associated condition for PAH or CTEPH ^d	Classª	Level ^b	With risk factors or associated conditions for PAH or CTEPH ^c	Class ^a	Level ^b	Ref ^c	
Low	Alternative diagnosis should be considered	lla	с	Echo follow-up should be considered	lla	с		
Intermediate	Alternative diagnosis, echo follow-up, should be considered	lla			Further assessment of PH including	lla	в	AE 44
	Further investigation of PH may be considered ^e	IIb	с	RHC should be considered ^e	на	ľ	45, 46	
High	Further investigation of PH (including RHC ^e) is recommended	I.	с	Further investigation of PH ^e including RHC is recommended	I	с		

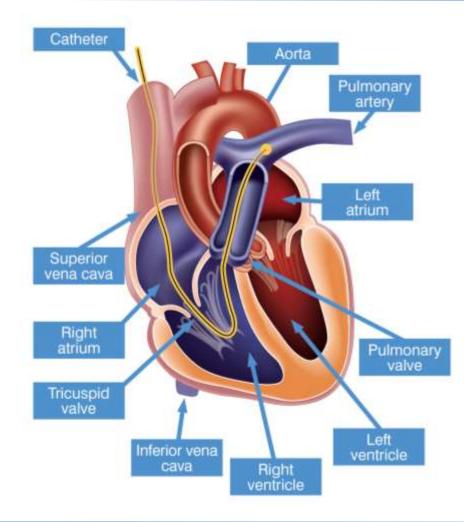



www.escardio.org

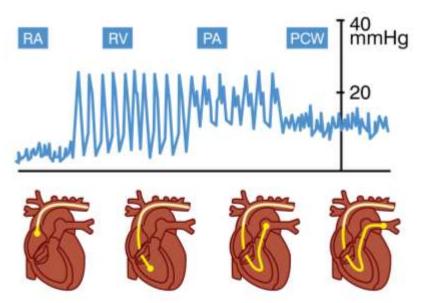
European Heart Journal 2016;37:67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975;

Right heart catheterisation

- the diagnostic gold standard¹



Standard approaches for catheter access


Galié et al. Eur Heart J 2009.

Right heart catheterisation

- the diagnostic gold standard¹

Characteristic intracardiac pressure waveforms during passage through the heart

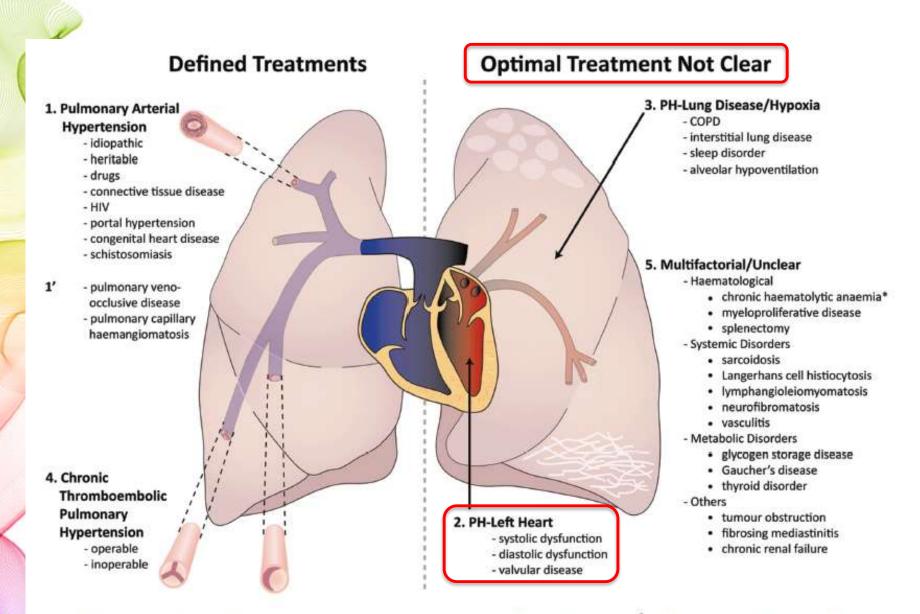


Figure 1. Classification of adult pulmonary hypertension. Adapted from Figure 1 of Kiely et al.³ COPD: chronic obstructive pulmonary disease; PH: pulmonary hypertension.

PAH supportive therapy

Recommendations Diuretic treatment is recommended in PAH patients with signs of RV failure and fluid retention.		Level
		C
Continuous long-term O_2 therapy is recommended in PAH patients when arterial blood O_2 pressure is consistently less than 8 kPa (60 mmHg).	I	C
Oral anticoagulant treatment may be considered in patients with IPAH, HPAH and PAH due to use of anorexigens.	пр	C
Correction of anaemia and/or iron status may be considered in PAH patients.	IIb	C
The use of angiotensin-converting enzyme inhibitors, angiotensin-2 receptor antagonists, beta-blockers and ivabradine is not recommended in patients with PAH unless required by co-morbidities (i.e. high blood pressure, coronary artery disease or left heart failure).		C

www.escardio.org

European Heart Journal 2016:37;67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975;

Management of pulmonary hypertension in left heart disease

Recommendations	Class	Leve
Optimization of the treatment of the underlying condition is recommended before considering assessment of PH-LHD (i.e. treating structural heart disease).	I	В
It is recommended to identify other causes of PH (i.e. COPD, SAS, PE, CTEPH) and to treat them when appropriate before considering assessment of PH-LHD.	I	C
It is recommended to perform invasive assessment of PH in patients on optimized volume status.	I	C
Patients with PH-LHD and a severe pre-capillary component as indicated by a high DPG and/or high PVR should be referred to an expert PH centre for a complete diagnostic work-up and an individual treatment decision.	IIa	C
The importance and role of vasoreactivity testing is not established in PH-LHD, except in patients who are candidates for heart transplantation and/or LV assist device implantation.	ш	с
The use of PAH approved therapies is not recommended in PH-LHD.	III	C

www.escardio.org

European Heart Journal 2016:37;67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975; EUROPEAN

SOCIETY OF

CARDIOLOGY

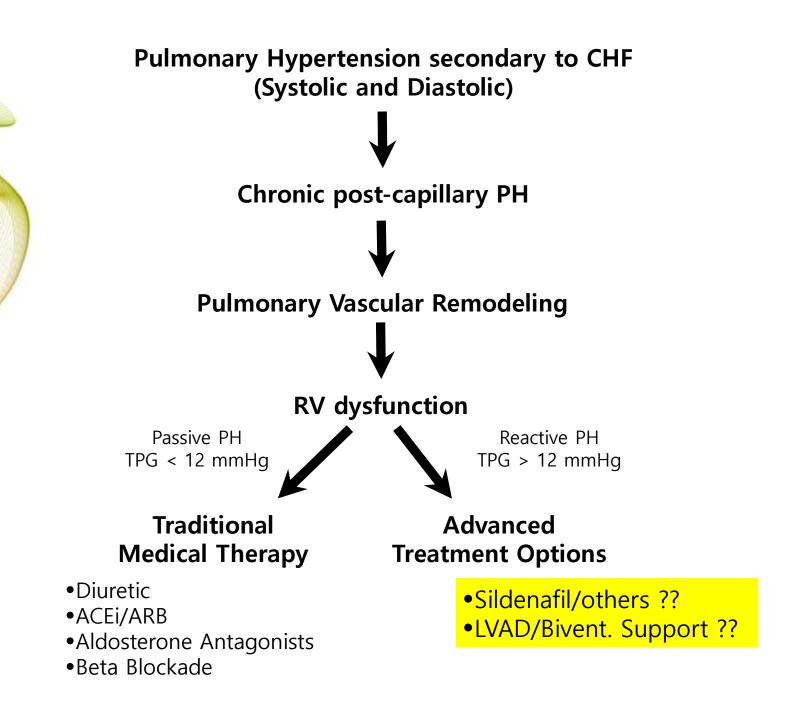


 Table 19
 Recommendations for efficacy of drug monotherapy for pulmonary arterial hypertension (group 1) according to

 World Health Organization functional class. The sequence is by pharmacological group, by rating and by alphabetical order

Measure/treatment Calcium channel blockers			Class ^a -Level ^b						Ref. ^c
			WHO-FC II		WHO-FC III		WHO-FC IV		
			1	Cd	1	Cd	-	-	84,85
Endothelin receptor antagonists	Ambrisentan		1	A	1	A	ПЬ	с	194
	Bosentan		Т.	A	Т.	A	ПЬ	с	196– 200
	Macitentan ^e		1.1	в	1	в	ПЬ	с	201
Phosphodiesterase type 5 inhibitors	Sildenafil		1	A	1	A	ПЬ	с	205- 208
	Tadalafil		1.1	в	1	в	ПЬ	С	211
	Vardenafi		ПЬ	в	ПЬ	В	ПЬ	с	212
Guanylate cyclase stimulators	Riociguat		1.1	в	1	в	ПЬ	с	214
Prostacyclin analogues	Epoprosteno	Intraven ous ^e	-	-	Т.	A	Т.	A	220– 222
	lloprost	Inhaled	-	-	1	в	ПЬ	с	229– 231
		Intravenous ⁸	-	-	lla	с	ПЬ	с	232
	Treprostinil	Subcutaneous	-	-	1.1	в	ПЬ	с	233
		Inhaled ^g	-		1.1	В	ПЬ	с	237
		Intraven ous ^f	-		lla	с	ПЬ	с	234
		Oral ^g	-	-	ПЬ	в	-	-	238- 240
	Beraprost ^g		-		ПЬ	в	-	-	218
IP receptor agonists	Selexipag (oral) ^g		1	в	1	в		-	241,248

EMA = European Medicines Agency; PAH = pulmonary arterial hypertension; RCT = randomized controlled trial; WHO-FC = World Health Organization functional class. *Class of recommendation.

^bLevel of evidence.

^cReference(s) supporting recommendations.

^dOnly in responders to acute vasoreactivity tests = class I, for idiopathic PAH, heritable PAH and PAH due to drugs; class IIa, for conditions associated with PAH. ^eTime to clinical worsening as primary endpoint in RCTs or drugs with demonstrated reduction in all-cause mortality.

^fIn patients not tolerating the subcutaneous form.

^gThis drug is not approved by the EMA at the time of publication of these guidelines.

European Heart Journal (2016) 37, 67–119 doi:10.1093/eurheartj/ehv317

SUPER-1

Sildenafil Use in Pulmonary Arterial HypERtension

Galiè N, et al. New Engl J Med 2005;353:2148–57.

SUPER-2

Long-Term Treatment with Sildenafil Citrate in Pulmonary Arterial Hypertension

Rubin LJ, et al. Long-term treatment with sildenafil citrate in pulmonary arteri al hypertension: SUPER-2. *Chest.* Epub May 2011

SUPER-1: conclusions

- Sildenafil significantly improved (vs placebo)
 - 6MWD
 - mPAP, PVR, CI
 - WHO FC
- Other favourable clinical trends included:
 - Fewer hospitalisations for PAH
 - Reduced breathlessness during exercise
- Sildenafil is generally well tolerated
- Sildenafil is efficacious in treating patients with PAH

CI = cardiac index ; FC = functional class; mPAP = mean pulmonary arterial pressure; 6MWD = 6-minute walk distance; PAH = pulmonary arterial hypertension; PVR = pulmonary vascular resistance; WHO = World Health Organization Galiè N, *et al. New Engl J Med* 2005;353:2148–57.

After 3 years

- 46% of patients maintained or improved 6MWD
- 60% of patients maintained or improved their functional status
- Kaplan-Meier estimated survival was 79%
- Most treatment-related adverse events were mild to moderate in severity, and included headache, dyspepsia, diarrhoea, blurred vision, nausea, and abdominal pain

Rubin LJ, et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: SUPER-2. Chest. Epub May 2011

Goal of Therapy for PH-LHD

- To improve global management of the underlying condition prior to considering specific measures to treat PH.
 - **Repair** of valvular heart disease when indicated
 - **Aggressive therapy** for HFrEF.
- Risk factors for cardiovascular diseases and features of **metabolic syndrome should be controlled**.
- In contrast, there is **no strong evidence-based** recommendation for the treatment **for HF-pEF**.
- There is no new evidence supporting the use of PAH therapies in PH-LHD, due in part to the absence of studies specifically for PH.

European Heart Journal 2016;37:67–119 -doi:10.1093/eurhearti/ehv317 European Respiratory Journal 2015;46: 903-975

The Ten Commandments

- Right heart catheterization is recommended to confirm the diagnosis of pulmonary arterial hypertension (PAH - Group 1) and to support treatment decisions.
- Vasoreactivity testing performed during right heart catheterization is recommended in patients with idiopathic PAH, heritable PAH and PAH induced by drugs or toxins use to detect patients who can be treated with high doses of a calcium channel blocker.
- It is recommended to evaluate the severity of PAH patients with a panel of data derived from clinical assessment, exercise tests, biochemical markers, and echocardiographic and haemodynamic evaluation and to perform regular follow-up assessments every 3-6 months in stable patients.
- 4. It is recommended to avoid pregnancy in patients with PAH.
- It is recommended for referral centres to provide care by a multiprofessional team (cardiology and respiratory medicine physicians, clinical nurse specialist, radiologists, psychological and social work support, appropriate on-call expertise).

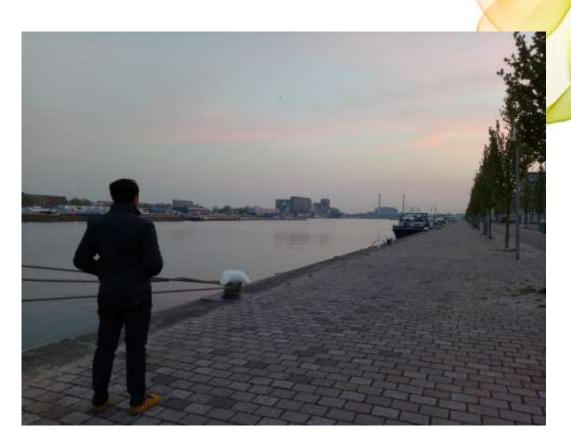
www.escardio.org

FRS EUROPEAN RESPIRATORY

The Ten Commandments

- Initial drugs monotherapy or initial oral drugs combination therapy is recommended in treatment naïve, low or intermediate risk patients with PAH.
- Sequential drugs combination therapy is recommended in PAH patients with inadequate treatment response to initial monotherapy or to initial oral drugs combination therapy.
- 8. Initial combination therapy including an intravenous prostacyclin analogue is recommended in high risk PAH patients.
- The use of PAH approved therapies is not recommended in patients with pulmonary hypertension due to left heart disease or lung diseases.
- 10. Surgical pulmonary endarterectomy in deep hypothermia circulatory arrest is recommended for patients with CTEPH and it is recommended that the assessment of operability and decisions regarding other treatment strategies (drugs therapy or balloon pulmonary angioplasty) be made by a multidisciplinary team of experts.

www.escardio.org

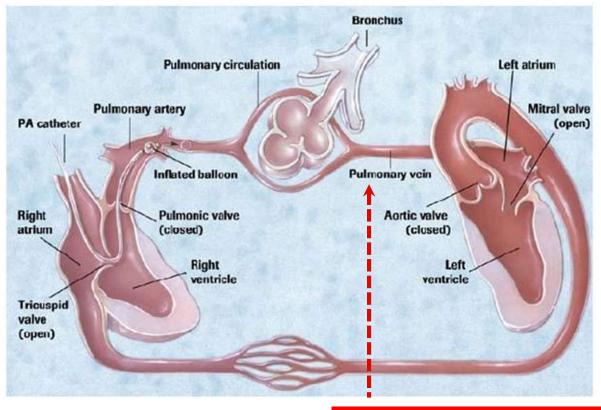

European Heart Journal 2016:37;67–119 -doi:10.1093/eurheartj/ehv317 European Respiratory Journal 2015 46: 903-975;

CONCLUSION

- PH is common in HF, unfortunately still under-diagnosed
- This condition increases morbidity and mortality
- Management remains lacking evidencebased approach
- Treat and optimize treatment of underlying disease in PH-LHD

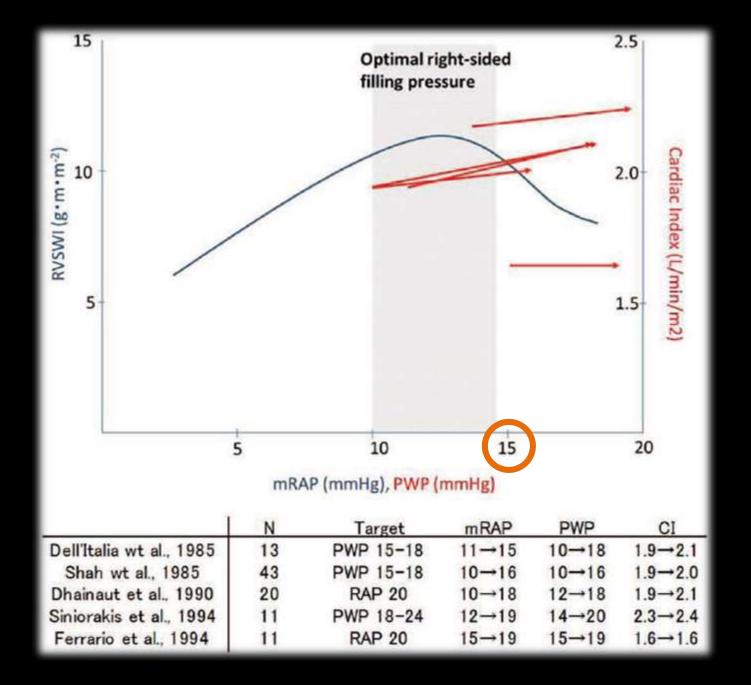
Thank You

End of Presentation

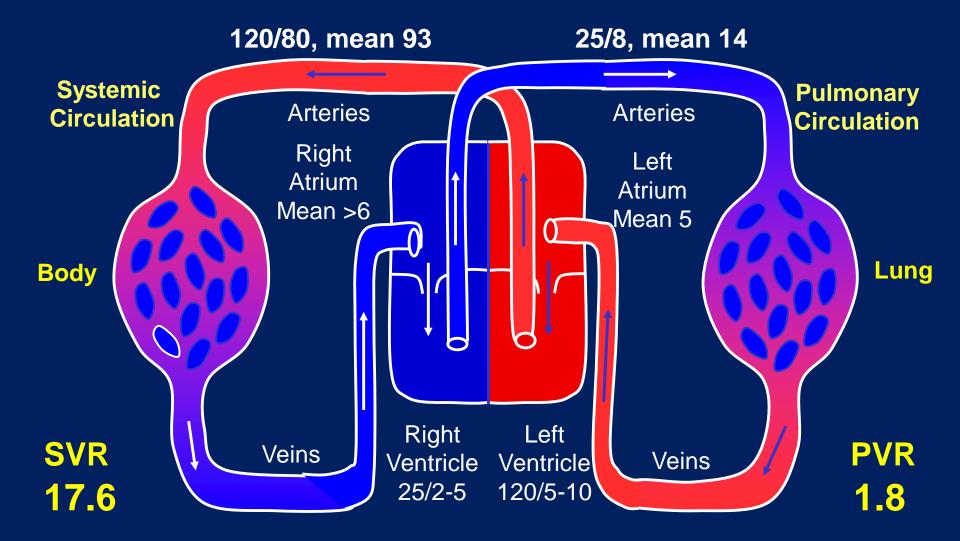

Functional class

Funct. Class	Symptomatic Profile			
Ι	Patients with pulmonary hypertension but without resulting limitation of physical activity. Ordinary physical activity does not cause dyspnoea or fatigue, chest pain, or near syncope			
II	Patients with pulmonary hypertension resulting in slight limitation of physical activity. They are comfortable at rest. Ordinary physical activity causes undue dyspnoea or fatigue, chest pain, or near syncope			
III	Patients with pulmonary hypertension resulting in marked limitation of physical activity. They are comfortable at rest. Less than ordinary activity causes undue dyspnoea or fatigue, chest pain, or near syncope.			
IV	Patients with pulmonary hypertension with inability to carry out any physical activity without symptoms. These patients manifest signs of right heart failure. Dyspnoea and/or fatigue may even be present at rest. Discomfort is increased by any physical activity			

Adapted from guidelines for the diagnosis and treatment of pulmonary hypertension¹


Relationship of HF and PH

Passive Congestion (Elevated PCWP)


Increased LVEDP (PCWP)

Pre - Capillary vs Post - Capillary

Inohara et al. European heart journal Acute cardiovascular care 2013;2:226-34.

Vascular Pressure in Systemic and Pulmonary Circulations (mmHg)

Click to add title

This PowerPoint Template has clean and neutral design that can be adapted to any content and meets various market segments. With this many slides you are able to make a complete PowerPoint Presentation that best suit your needs.

This PowerPoint Template has clean and neutral design that can be adapted to any content and meets various market segments. With this many slides you are able to make a complete PowerPoint Presentation that best suit your needs.

This PowerPoint Template has clean and neutral design that can be adapted to any content and meets various market segments. With this many slides you are able to make a complete PowerPoint Presentation that best suit your needs.

This PowerPoint Template has clean and neutral design that can be adapted to any content and meets various market segments. With this many slides you are able to make a complete PowerPoint Presentation that best suit your needs.