



# Heart Failure Management:

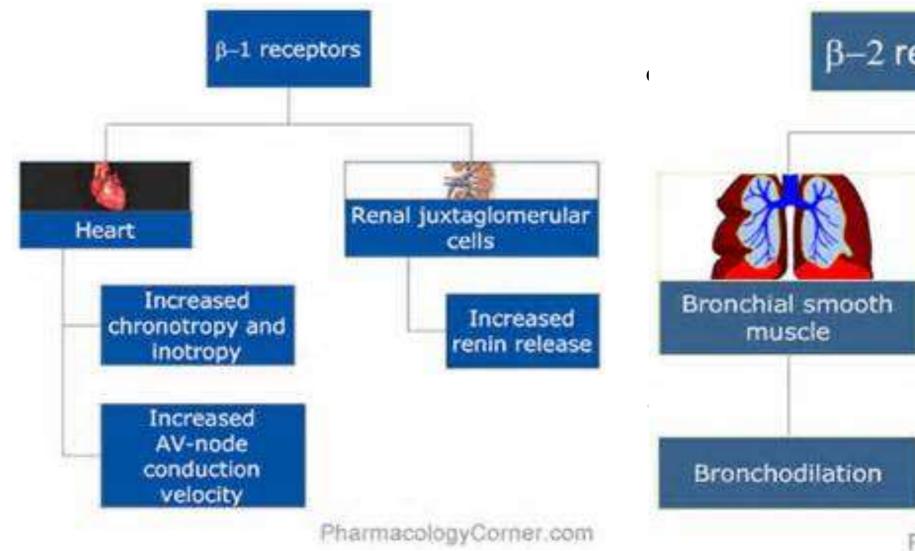
Which Betablocker, When to start and how to start

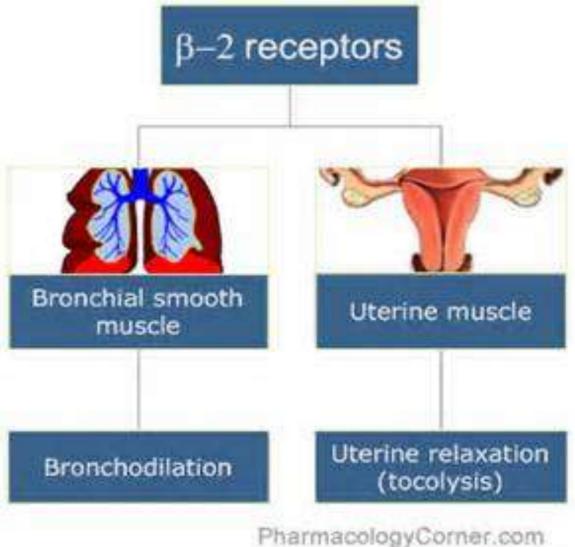


### Mode of Action

- Beta-receptors

  Click to edit the outline text format
- ... are on the surface of cells innervated by the sympathetic nervous system
- ...mediate certain physiological responses to adrenaline
  - Seventh Outline Level
  - Eighth OutlineLevel






### Mode of Action







V TUUTIII ICVC

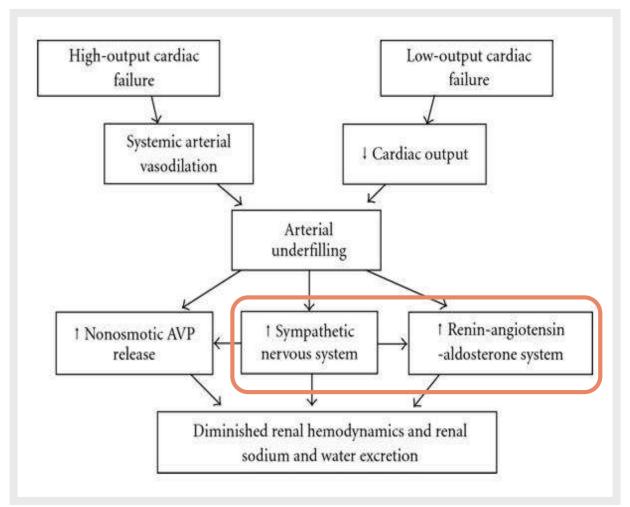
A 7:01 1 1



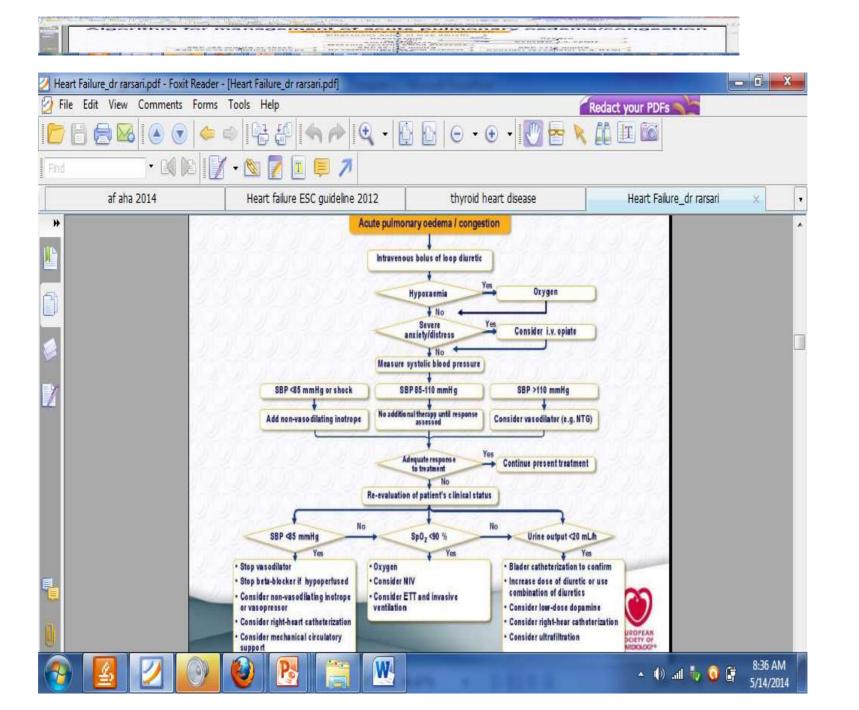
# Effects of β-blockers



| Tissue                   | Receptor              | Effect                                                                                        |  |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------|--|
| Heart                    |                       |                                                                                               |  |
| SA node                  | $\beta_1, \beta_2$    | Increase in heart rate                                                                        |  |
| AV node                  | $\beta_1, \beta_2$    | Increase in conduction velocity                                                               |  |
| Atria                    | $\beta_1, \beta_2$    | Increase in contractility                                                                     |  |
| Ventricles               | $\beta_1$ , $\beta_2$ | Increase in contractility, conduction velocity and automaticity of idioventricular pacemakers |  |
| Arteries                 | $\beta_2$             | Vasodilation                                                                                  |  |
| Veins                    | $\beta_2$             | Vasodilation                                                                                  |  |
| Skeletal muscle          | $\beta_2$             | Vasodilation, increased contractility                                                         |  |
|                          |                       | Glycogenolysis, K <sup>+</sup> uptake                                                         |  |
| Liver                    | $\beta_{\mathbf{Z}}$  | Glycogenolysis and gluconeogenesis                                                            |  |
| Pancreas (β cells)       | $\beta_2$             | Insulin and glucagon secretion                                                                |  |
| Fat cells                | $\beta_1$             | Lipolysis                                                                                     |  |
| Bronchi                  | $\beta_2$             | Bronchodilation                                                                               |  |
| Kidney                   | $\beta_1$             | Renin release                                                                                 |  |
| Gallbladder and ducts    | $\beta_2$             | Relaxation                                                                                    |  |
| Urinary bladder detrusor | β2                    | Relaxation                                                                                    |  |
| Uterus                   | $\beta_2$             | Relaxation                                                                                    |  |
| Gastrointestinal         | $\beta_2$             | Relaxation                                                                                    |  |
| Nerve terminals          | $\beta_2$             | Promotes noradrenaline release                                                                |  |
| Parathyroid glands       | $\beta_1$ , $\beta_2$ | Parathormone secretion                                                                        |  |
| Thyroid gland            | $\beta_2$             | T4 → T3 conversion                                                                            |  |


SA: Sino-Atrial; AV: Auriculo-Ventricular.

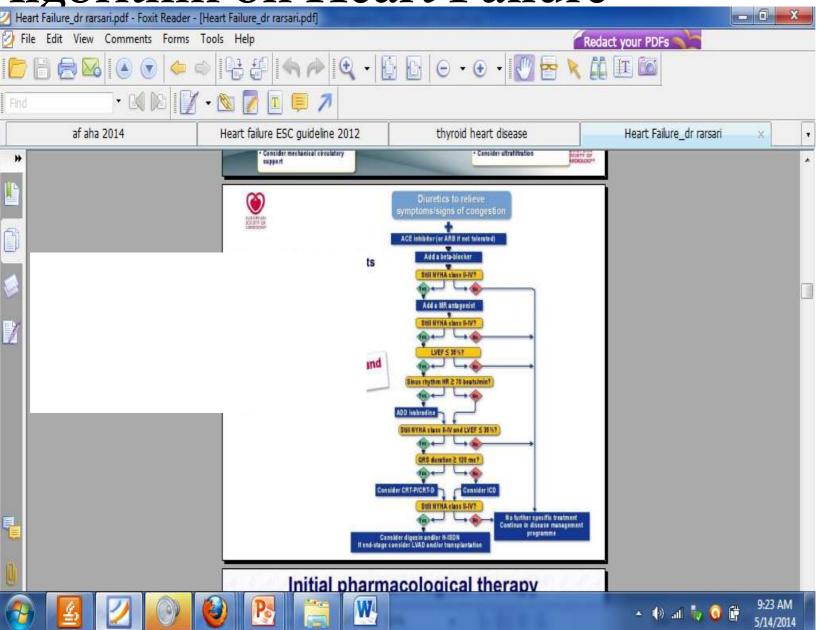



### Heart Failure



- Characterized by neurohormonal activation (RAA system and SNS)
- Reducing this activation with ACEi/ ARBs and Betablockers have been the mainstay of the management for so many years 
  GUIDELINES
- Recommended and licensed βblockers for HF bisoprolol, carvedilol, metoprolol and nebivolol
  - SeventhOutline Level
  - Eighth OutlineLevel

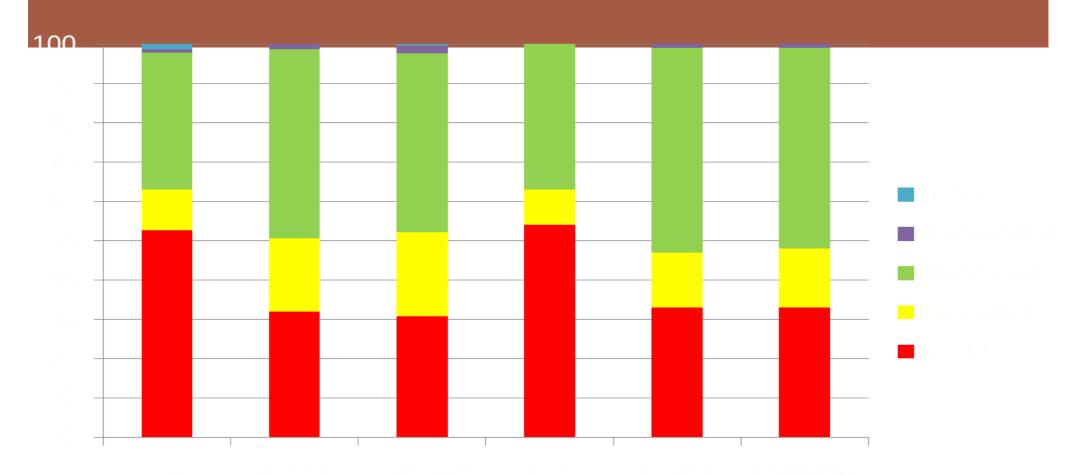









Algorithm on Heart Failure

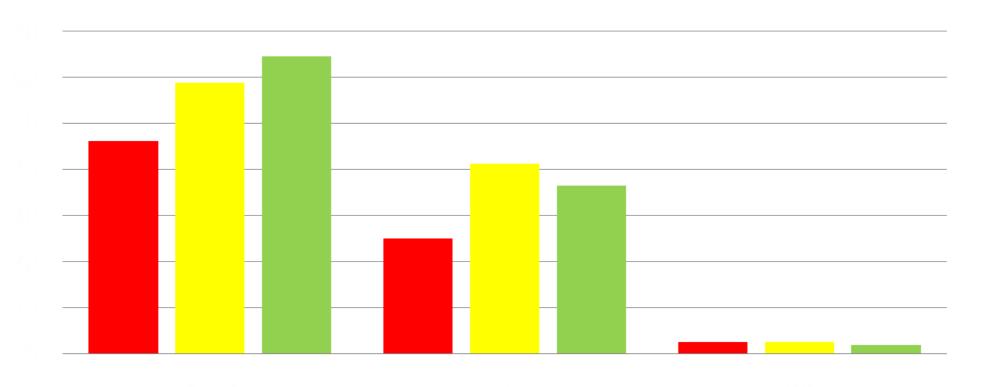







# Use in HF patients?



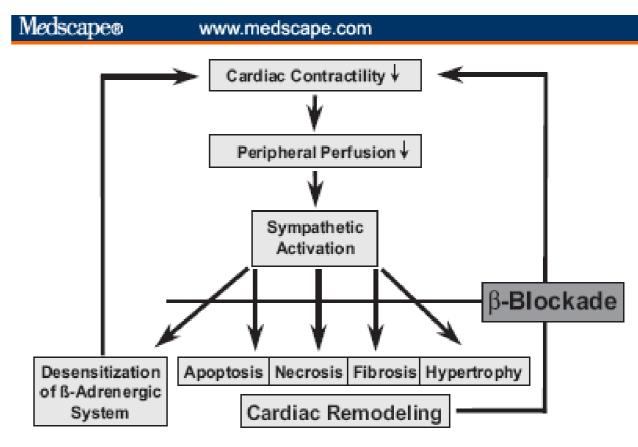





# Are we on target dose?



#### **Heart Failure Registry 2011**






### How well do $\beta$ -blockers work in HF?



- $\diamond$  ± 34 % reduction in mortality
- Suggested mechanisms also include reduce remodeling
- β-Blockers may be beneficial through resensitization of the down-regulated receptor, improving myocardial contractility.
- Acts primarily by inhibiting the sympathetic nervous system.
- Increases beta receptor sensitivity (up regulation).
- Anti-arrhythmic properties.
- Anti-oxidant properties



Source: CHF @ 2003 Le Jacq Communications, Inc.

Second level

Third level

♦ Fourth level



### How safe are $\beta$ -blockers?



- Possible side effects :
  - Bronchospasm
  - Cold peripheries
  - Hypotension
  - ♦ Bradycardia
  - ADHF
  - Deterioration in blood glucose control

Withhold it the outline text format

Asthma or COPD

Elderly Third Outline Level

PAD patents th Outline Level

Severe LV dysfunction

– Sixth Outline Level

DM

Seventh Outline Level

- Eighth Outline Level
- ♦ Ninth Outline LevelClick to edit Master text styles
  - ♦ Second level
    - ♦ Third level

♦ Fourth level



### Advanced /chronic heart failure with decompensation



- In those with EF  $< 30 \% \square$  biventricular HF
- In patients who develop acutely decompensated HF while on chronic betablocker therapy, the dose of these agents may be reduced, or they may be temporarily withdrawn, but treatment should be restarted as soon as clinical conditions stabilize\*
- Continuation of beta-blocker treatment during an episode of decompensation has been shown in an RCT to be safe although dose reduction may be necessary\*\*
- Temporary discontinuation is advised in shocked or severely hypoperfused patients\*\*

#### ESC Expert consensus document



# Expert consensus document on \( \beta \)-adrenergic receptor blockers

The Task Force on Beta-Blockers of the European Society of Cardiology

| Table 8 Use of β-blockers in chronic heart failure: guidelines |               |  |  |  |
|----------------------------------------------------------------|---------------|--|--|--|
| Class                                                          | Level         |  |  |  |
| ı                                                              | Α             |  |  |  |
| !                                                              | A<br>B        |  |  |  |
| lla                                                            | Č             |  |  |  |
| lla<br>I                                                       | B<br>A        |  |  |  |
|                                                                | l<br>I<br>Ila |  |  |  |

AMI: Acute Myocardial Infarction; LVEF: Left Ventricular Ejection Fraction; LVSD: Left Ventricular Systolic Dysfunction.



### Elderly



- Under presented in many clinical trials
- ◆ Deedwania et al (2004): subgroup analysis of 1982 patients over 65 years □ reduction of one-year-all cause mortality □ comparable to those in younger patients
- ◆Flather et al (2005): an RCT of 2128 patients over 70 years reduction in composite endpoints

OLDER PATIENTS WITH HEART FAILURE WITH IMPAIRED SYSTOLIC FUNCTION HAVE SIMILAR OUTCOMES WITH β-BLOCKERS AS YOUNGER PATIENTS



### Asthma and COPD



- Considered as the major contraindication
- Salpeter SR et al (2002): ... at least, in the short term, no deterioration of lung fuction occurs when cardioselective β-blockers are used in mild to moderate asthma
- Salpeter SR et al (2005): cardioselective β-blockers given to patients with COPD, including those with reversible and irreversible airways disease, found no change in forced expiratory volume, breathlessness or effect of bronchodilators
- ♦ Krum H et al (2000): tolerability of carvedilol in heart failure was similar in patients with and without COPD



## Peripheral vascular disease

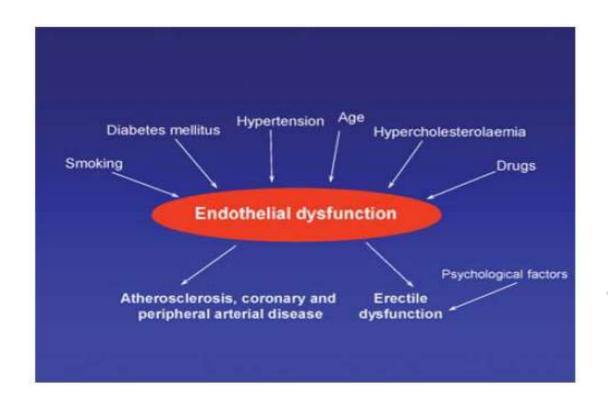


- $\odot$  Theory : β-blocker  $\square$  decrease in CO and BP, impaired muscle vasodilatation  $\square$  worsening symptoms of PAD
- ◆ Radack et al (1991): meta analysis 11 RCTs □ β-blockers in stable mild to moderate claudication showed no significant effect on pain-free walking distance
- $\odot$  Krum et al (2000) : good tolerability of  $\beta$ -blockers in patients with PAD and HF
- ◆ In critical limb ischaemia ☐ contraindication



#### Diabetes mellitus




- $\bigcirc$  Theory : β-blockers  $\square$  inhibit glycogenolysis  $\square$  mask the symptoms of hypoglycemia
- No randomize trials focusing on patients DM and HF
- ◆ Erdmann et al (2001)
- ♦ Shibata et al (2001)
- Poole-Wilson et al (2003)

similar tolerability and benefits





# **Erectile Dysfunction**



| Drug class                  | Age-adjusted relative risk of ED |
|-----------------------------|----------------------------------|
| Angiotensin II antagonists  | 2.4                              |
| Non-selective beta-blockers | 2.0                              |
| Calcium antagonists         | 1.8                              |
| Diuretics                   | 1.4                              |
| ACE-inhibitors              | 1.2                              |
| Selective beta-blockers     | 1.0                              |
| Statins                     | 0.9                              |
| Organic nitrates            | 0.8                              |

- Ninth Outline LevelClick to edit Master text styles
  - ♦ Second level
    - ♦ Third level

♦ Fourth level



# How do β-blockers compare with other drugs



- ◆ ACEi and ARBs □ not an alternative :
  - additive effect on mortality and morbidity
  - ♦ B-blockers is an add-on therapy
- ◆ Spironolactone and Ivabradine □ as add-on therapies



### Practical Guidance in HF



Betablockers: Bisoprolol, carvedilol, metoprolol, nebivolol

Who should receive  $\beta$ -blockers ?

- All patients with chronic, stable HF
- Without contraindication (symptomatic hypotension, severe asthma)

#### When to start?

- No physical evidence of fluid retention
- Start ACEi first (if not contraindicated)
- In stable hospitalized patients (if possible)
- NYHA class IV or severe CHF patients should be referred for specialist advice
- Review treatment, avoid verapamil, diltiazem, antiarrhythmics, NSAID



### Practical Guidance in HF



#### Monitor

- Evidence of HF, fluid retention, hypotension and bradycardia
- Instruct patients to weigh themselves daily

#### Dose

- Start low go slow
- Aim for target dose, if not tolerated □ the highest dose tolerated

|            | Start (mg)        | Target (mg)         |
|------------|-------------------|---------------------|
| Bisoprolol | 1.25 once daily   | 10 once daily       |
| Carvedilol | 3.125 twice daily | 25 – 5- twice daily |



## Problem solving



- Reduce/ discontinue only if other actions were ineffective to control symptoms
- ♦ Always consider the re-introduction and/or uptitration when stable
- Seek specialist advice if in doubt

#### Symptomatic hypotension

- Reconsider needs of other hypotensive agents : nitrates, CCB or other vasodilators
- If no signs/ symptoms of congestion, consider reducing diuretics dose

#### Severe decompensated HF, pulmonary edema, shock

- Admit patient to the hospital
- Discontinue, if inotropic is needed



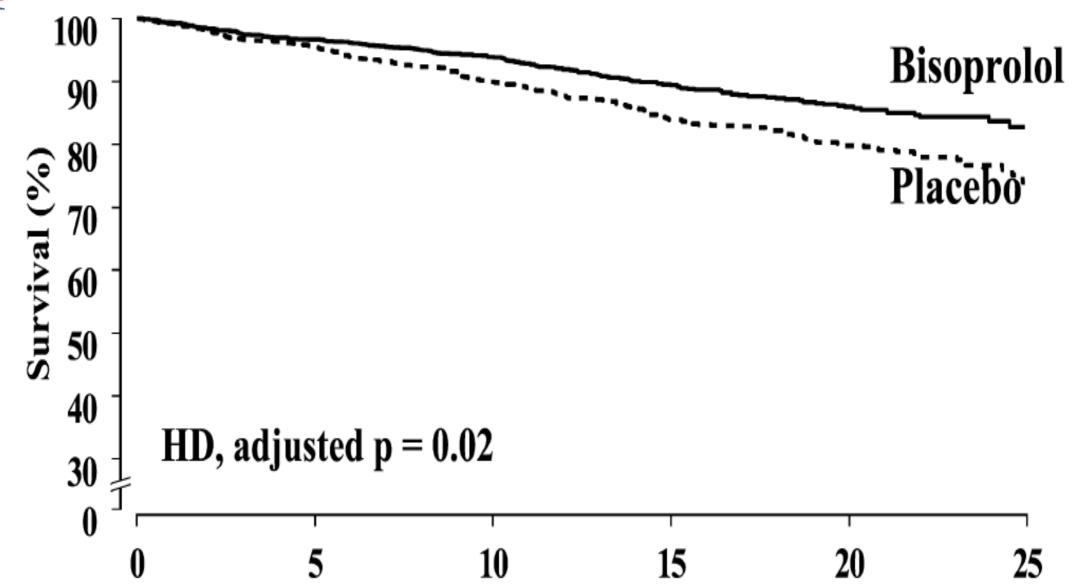
### Problem solving



#### Worsening symptoms/ signs of HF

- No need to discontinue □ double dose of diuretic and or ACEi
- Temporarily reduce the dose if increasing diuretics dose does not work
- If serious deterioration □ half dose
- Discontinuation (rarely necessary)
- Review patients in 1-2 weeks, if not improved seek specialist advice

#### Bradycardia (symptomatic)


- ECG to exclude heart block
- Consider pacemaker support if severe bradycardia, AV block or SSS early after starting
- Review: need, reduction or discontinuing other heart rate slowing drugs e.g digoxin, amiodarone, diltiazem
- Reduce dose (discontinuation rarely necessary)

## Conclusion ~ Tips for doctors

- Always consider adding β-blocker to standard treatment for HF with impaired systolic function, regardless of severity
- Do not with-hold from patients with comorbidities (COPD, DM, PAD)
- Avoid in total AV block, severe poorly controlled asthma, and critical limb ischaemia
- ♦ Use drug licensed for HF: bisoprolol, carvedilol, metoprolol, nebivolol
- ♦ Start with small dose, titrate slowly every 2 weeks
- ♦ Aim to achieve recommended target dose, but accept the maximum tolerated dose
- ♦ Check standing and sitting BP and heart rate, bradycardia in the absence of symptoms does not require dose reduction
- $\odot$  Try not to stop the  $\beta$ -blocker if the HF deteriorates, try to adjust other drugs to regain control of symptoms and fluid balance
- ♦ In patients who also have asthma or COPD, monitor symptoms and peak expiratory flow rates closely











# Thank you