



# The fog of war in acute heart failure: initiate, conquest, wins!

dr. Edrian Zulkarnain, Sp.JP-FIHA

KSM Kardiologi, RSUP Moh. Hoesin Palembang Working Group on Heart Failure and Cardiometabolic

**Indonesian Heart Association** 

🞯 @ina.hf | 🔘 +62 811-1900-8855 | 🗹 pokjahf@

pokjahf@gmail.com



# Disclaimer

All information presented in these slides are intended for scientific exchange and not to solicit off-label use. Please refer to local prescribing information for all drugs mentioned in this presentation for further details before prescribing. In Indonesia, EMPAGLIFLOZIN is indicated:

#### **1.Type 2 Diabetes Mellitus**

Add on combination:

In adult patients with type 2 diabetes mellitus to improve glycemic control, when metformin used alone does not provide adequate glycemic control, combination with:

Metformin, Metformin and a sulfonylurea, EFCARD 2024

Metformin and pioglitazone

when the existing therapy, along with diet and exercise, does not provide adequate glycemic control.

For study results with respect to combination, effects on glycaemic control and cardiovascular events, and the populations studied, see sections Special warnings and precautions for use, Interaction with other medicinal products and other forms of interactions, and Pharmacodynamic properties.

#### 2. Heart Failure

In adult patients for the treatment of symptomatic chronic heart failure

In Indonesia, Empagliflozin is not yet indicated for the treatment of Kidney Disease





Ô

InaHF

Error bars represent 95% Cl.

CI, confidence interval; HF, heart failure; HHF, hospitalization for heart failure. Setoguchi S et al. Am Heart J. 2007;154:260.

**Hospitalization** 



**Timeline of heart failure: The vulnerable period** 

15

InaHF



Figure adapted from Cox ZL et al. Am Heart J. 2021;232:116. 1. Fongrow GC et al. J Am Coll Cardiol. 2007:50:768: 2. Bueno H et al. JAMA. 2010:303:2141.

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease



# Schematic representation of possible pathophysiological

Ü

InaHF

### mechanisms in AHF



#### Box 1 | The '7-P' protocol

- The assessment of the clinical phenotype based on peripheral perfusion (whereby normal perfusion is considered 'warm' and symptoms or signs of hypoperfusion are considered 'cold') and/or systemic congestion (whereby no congestion is considered 'dry' and the presence of congestion is considered 'wet') enables the classification of patients into one of four profiles. The vast majority of patients with AHF are well perfused but congested ('warm-wet').
- The initial treatment tackling haemodynamic disorders (for example, vasodilators and/or diuretics to reduce systemic congestion and positive inotropic drugs to improve peripheral perfusion) should be personalized according to the clinical phenotype and the leading pathophysiology (for example, fluid accumulation, fluid redistribution or peripheral hypoperfusion).
- Identification of the precipitants of AHF is essential for providing optimal specific (medical and/or surgical) therapy and for estimating both prognosis and recovery potential.
- Similarly, identification of the underlying cardiac pathology can contribute to tailoring the treatment.
- The assessment of polymorbidity (for example, renal and hepatic dysfunction) or other relevant conditions (such as pregnancy, bleeding risk and allergies) should be integrated into the management plan.
- Potential iatrogenic harms associated with diagnostic procedures and treatment should also be considered.
- 7. Patient preferences and ethical considerations should be integrated into the personalization of the treatment. Discussion with the patient or with relatives about resuscitation directives and treatment options are crucial and need to be evaluated early rather than late, particularly in patients with AHF who might show rapid deterioration. In the absence of long-term therapeutic options, palliation and supportive care should be offered to patients and relatives.

# PRIMER

Check for updates

### Acute heart failure

Mattia Arrigo<sup>1</sup>, Mariell Jessup<sup>2</sup>, Wilfried Mullens<sup>3,4</sup>, Nosheen Reza<sup>2</sup>, Ajay M. Shah<sup>5</sup>, Karen Sliwa<sup>6</sup> and Alexandre Mebazaa<sup>7,8</sup>

Nature Reviews | Disease Primers | Article citation ID: (2020) 6:16 https://doi.org/10.1038/s41572-020-0151-7









## Management of patients with suspected acute heart failure

Ô





### **Schematic Representation of Management of Acute Heart Failure**

InaHF



Schematic representation of management of acute heart failure (AHF) patients from hospital admission to post-discharge period. Assessment of congestion includes clinical signs and symptoms (fatigue, dyspnoea, orthopnoea, oedema, and body weight), ultrasound assessment (lung, pleura, inferior vena cava, and ascites), and biology (natriuretic peptides and haematocrit). i.v., intravenous.

European Heart Journal (2023) 44, 4634–4649 https://doi.org/10.1093/eurheartj/ehad617



## ESC Guideline recommendations for pre-discharge and early postdischarge follow-up of patients hospitalised for acute heart failure

**Recommendation Table 3** — Recommendation for pre-discharge and early post-discharge follow-up of patients hospitalized for acute heart failure

| Recommendation                                                                                                                                                                                                                                                                                                      | <b>C</b> lass <sup>a</sup> | Level <sup>b</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|
| An intensive strategy of initiation and rapid<br>up-titration of evidence-based treatment before<br>discharge and during frequent and careful follow-up<br>visits in the first 6 weeks following a HF<br>hospitalization is recommended to reduce the risk of<br>HF rehospitalization or death. <sup>c,d,e 16</sup> | ιΉ                         | В                  |

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; CV, cardiovascular; HF, heart failure; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

#### <sup>a</sup>Class of recommendation

#### <sup>b</sup>Level of evidence

pean S I TA *et* 

<sup>c</sup>In STRONG-HF, the use of ACE-I/ARB/ARNI, beta-blockers, and MRA was evaluated in patients with HFrEF, HFmrEF, and HFpEF

ESC 2023

<sup>d</sup>This recommendation is based on the reduction of the primary endpoint used in the STRONG-HF trial. However, it should be noted that there was a significant reduction only in HF hospitalization and no reduction in CV death or all-cause death alone and that these results were obtained in a specific patient population, not already on full doses of evidence-based HF therapies, who were haemodynamically stable, with elevated NT-proBNP concentrations at screening (>2500 pg/mL), and a >10% decrease in concentration between screening and randomization, according to the enrolment criteria

<sup>e</sup>Although STRONG-HF was based only on triple therapy with neurohormonal modulators, this recommendation also includes **empagliflozin** or dapagliflozin based on recent evidence

**Recommendation Table 4** — Recommendations for the prevention of heart failure in patients with type 2 diabetes mellitus and chronic kidney disease

| Recommendations                                                                                                                                                                                | Class <sup>a</sup> | Level <sup>b</sup> |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|------------|
| In patients with T2DM and CKD, <sup>c</sup> SGLT2 inhibitors<br>(dapagliflozin or empagliflozin) are recommended to<br>reduce the risk of HF hospitalization or CV<br>death. <sup>5,7,35</sup> | 1                  | A                  |            |
| In patients with T2DM and CKD, <sup>c</sup> finerenone is recommended to reduce the risk of HF hospitalization. <sup>10,11,34,40</sup>                                                         | i.                 | A                  | © ESC 2023 |



European Heart Journal (2023) 44, 4634–4649 European Society of Cardiology https://doi.org/10.1093/eurheartj/ehad617

#### STATE OF THE ART REVIEW

Heart failure and cardiomyopathies



Table 2 Trials showing benefits of heart failure medications at and after discharge of acute heart failure

| Study name                                                                                                                                                                                                    | Туре                         | Intervention                                                                                                                                                            | Primary outcome                                                                                                                                                                                                                                                                                        | Duration of<br>intervention<br>and follow-up | Number<br>of<br>patients | Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Impact on<br>mortality                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| EMPagliflozin in patients<br>hospitalized with acUte<br>heart failure who have been<br>StabilisEd<br>EMPULSE study <sup>98,99</sup><br>NCT04157751                                                            | Randomized<br>clinical trial | Patients admitted for acute<br>de novo or<br>decompensated chronic<br>HF<br>2 groups<br>– Empagliflozin 10 mg<br>once daily<br>– Placebo                                | Clinical benefit, defined as a<br>hierarchical composite of<br>death from any cause,<br>number of HF events and<br>time to first HF event, or a<br>5 point or greater<br>difference in change from<br>baseline in the Kansas<br>City Cardiomyopathy<br>Questionnaire total<br>symptom score at 90 days | 90 days                                      | 530<br>patients          | Better clinical benefit in empagliflozin<br>group (stratified win ratio, 1.36;<br>95% Cl 1.09–1.68; P=.0054)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes<br>(4.2% in<br>empagliflozin<br>group vs. 8.3% in<br>placebo group)                                  |
| Comparison of<br>Sacubitril-Valsartan versus<br>Enalapril on Effect on<br>NT-proBNP in Patients<br>Stabilized from an Acute<br>Heart Failure Episode<br><b>PIONEER-HF study</b> <sup>101</sup><br>NCT02554890 | Randomized<br>clinical trial | HFrEF patients admitted<br>for acute<br>decompensated HF<br>2 groups<br>- Sacubitril (97 mg) +<br>valsartan (103 mg) twice<br>daily<br>- Enalapril 10 mg twice<br>daily | Time-averaged proportional<br>change in the<br>NT-proBNP<br>concentration from<br>baseline through weeks 4<br>and 8                                                                                                                                                                                    | 60 days                                      | 881<br>patients          | Reduced time-averaged in the<br>NT-proBNP concentration in the<br>sacubitril/valsartan group:<br>(i) reduced geometric mean of<br>values at weeks 4 and 8 to the<br>baseline (0.53 in the sacubitril/<br>valsartan group vs. 75 in the<br>enalapril group (per cent change,<br>-46.7% vs25.3%; ratio of change<br>with sacubitril/valsartan vs. enalapril,<br>0.71; 95% CI 0.63-0.81; P < .001).<br>(ii) Greater reduction in the<br>NT-proBNP concentration with<br>sacubitril/valsartan at 1 week (ratio<br>of change, 0.76; 95% CI 0.69-0.85).<br>No difference of worsening renal<br>function, hyperkalaemia,<br>symptomatic hypotension, and<br>aneioedema between groups | No<br>(2.3% in sacubitril-<br>valsartan group vs.<br>3.4% in enalapril<br>group, HR 0.66<br>(0.30-1.48)) |



# There is an urgent unmet need to improve care for patients hospitalized with acute heart failure



Heart failure is the number one reason for hospitalization in patients aged >65 years, with 24% of patients rehospitalized within 30 days of discharge<sup>1,2</sup>

In-hospital initiation of therapies is one of the best predictors of long-term adherence to medications<sup>3,4</sup>



In EMPEROR-Reduced and EMPEROR-Preserved, there was an early benefit in reducing CV death or HHF for patients with chronic HFrEF and HFpEF treated with empagliflozin, respectively<sup>5–8</sup>

**EMPULSE** was specifically designed to prospectively address **in-hospital initiation of empagliflozin** in patients hospitalized for **acute heart failure**, regardless of LVEF or de novo or decompensated chronic presentation<sup>9</sup>

1. Azad N et al. J Geriatr Cardiol. 2014;11:329; 2. Krumholz HM et al. Circ Cardiovasc Qual Outcomes. 2009;2:407; 3. Curtis LH et al. Am Heart J 2013;165:979; 4. Butler J et al. J Am Coll Cardiol. 2004;43:2036; 5. Packer M et al. N Engl J Med. 2020;383:1413; 6. Anker SD et al. N Engl J Med. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2022;doi:10.1002/ejhf.2420; 9.910 19.92857; EUr J Heart Fail. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2022;doi:10.1002/ejhf.2420; 9.910 19.92857; EUr J Heart Fail. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2022;doi:10.1002/ejhf.2420; 9.910 19.92857; EUr J Heart Fail. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2022;doi:10.1002/ejhf.2420; 9.910 19.92857; EUr J Heart Fail. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2022;doi:10.1002/ejhf.2420; 9.910 19.92857; EUr J Heart Fail. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2022;doi:10.1002/ejhf.2420; 9.910 19.92857; EUr J Heart Fail. 2021;385:1451; 7. Packer M et al. Circulation. 2021;143:326; 8. Butler J et al. Eur J Heart Fail. 2021;28578; 1. Image: All Packer Fail. 2021;28578; 1. Image: All Packer





# EMPULSE studied the effect of empagliflozin in patients hospitalized for acute heart failure<sup>1,2</sup>



#### **Primary endpoint**

- Clinical benefit evaluated with a win ratio based on a composite of:
  - Death
  - Number of HFEs (including HHFs, urgent HF visits and unplanned outpatient visits)
  - Time to first HFE
  - ≥5 point difference in the KCCQ-TSS change from baseline after 90 days of treatment



# **EMPULSE: Selected inclusion and exclusion criteria**

#### INCLUSION

Currently hospitalized for the primary diagnosis of AHF (de novo or decompensated chronic HF), regardless of EF

Meets stabilization criteria

Randomization ≥24 hours and no later than 5 days after admission, as early as possible after stabilization and while still in hospital

Elevated NT-proBNP or BNP: Without AF: NT-proBNP  $\geq$ 1600 pg/mL or BNP  $\geq$ 400 pg/mL With AF: NT-proBNP  $\geq$ 2400 pg/mL or BNP  $\geq$ 600 pg/mL

Treatment with minimum dose of 40 mg of IV furosemide (or equivalent of other IV loop diuretic)

#### **EXCLUSION**

Cardiogenic shock

HHF triggered by secondary cause (e.g. acute MI, pulmonary embolism)

Planned or previous (within 30 days) cardiovascular revascularization or major cardiac surgery/intervention/ device implantation

Prior ACS, MI, stroke or TIA within 90 days

eGFR <20 mL/min/1.73 m<sup>2</sup>

Type 1 diabetes mellitus

#### Further criteria apply



# **EMPULSE: Primary diagnosis of acute heart failure**

### Patients hospitalized due to HF must have HF symptoms at the time of hospital admission





# **EMPULSE: Stabilization criteria**

### All of the following criteria must apply for inclusion

Systolic BP ≥100 mmHg and no symptoms of hypotension in the preceding 6 hours No increase in IV diuretic dose for **6 hours** prior to randomization

2

No IV vasodilators including nitrates within the last **6 hours** prior to randomization

3

No IV inotropic drugs for **24 hours** prior to randomization





# **EMPULSE: Study endpoints**

Primary endpoint

#### Clinical benefit

Composite of death, number of HFEs (including HHFs, urgent HF visits and unplanned outpatient visits), time to first HFE and ≥5 point difference in the KCCQ-TSS change from baseline after 90 days of treatment

Improvement of KCCQ-TSS of ≥10 points after 90 days of treatment

Days alive and out of hospital until 90 days after randomization

Selected secondary endpoints Days alive and out of hospital until 30 days after initial hospital discharge

Change in log-transformed NT-proBNP level after 30 days of treatment

Time to first occurrence of CV death or HFE until end of trial visit

Occurrence of HHF until 30 days post-discharge

Occurrence of chronic dialysis or renal transplant or sustained reduction of eGFR\*





# **EMPULSE: Advantages of the win ratio**

#### **Advantages**

|   | = |  | L |  |
|---|---|--|---|--|
|   |   |  |   |  |
|   |   |  |   |  |
| - |   |  | - |  |

#### Incorporates all key events<sup>1,2</sup>

Recognises all events, not just the first one (unlike time-tofirst-event analyses) e.g. a death after a non-fatal event is included and prioritized

| - 4 |  |
|-----|--|
|     |  |

#### Clinical priorities recognized<sup>1,2</sup>

Hierarchical analysis prioritises outcomes based on relative clinical importance – e.g. death is prioritized over a previous non-fatal event (unlike time-to-first-event analyses)



#### Recurrent events easily incorporated<sup>1</sup>

Can account for multiple events (e.g. hospitalizations) without statistical complexity

#### Non-event outcomes can be included<sup>1</sup>

Can include continous, visit-related items (e.g. QoL scores)

#### Conceptually straightforward<sup>1</sup>

Counting "winners" across pairwise comparisons relies on the intuitive concept of judging whether a patient is doing better or worse than another patient (unlike explaining a HR)

#### Challenges



#### Lack of familarity<sup>1,2</sup>

Relatively new method so not as well understood as a time-toevent analysis – limited experience with the interpretation of effect size and the subcomponents

InaHF



#### Determining sample size<sup>1</sup>

Power calculations rely on assumptions of effect sizes, variability and interdependence of the components

### Q

#### More methodological research needed

Not possible to obtain treatment effect measures (NNT) and not possible to adjust for continous covariates

#### Experience

Pivotal studies where a win ratio was utilised

|                       | Drug          | Therapy area                            | Endpoint                                           |
|-----------------------|---------------|-----------------------------------------|----------------------------------------------------|
| ATTR-ACT <sup>3</sup> | Tafimidis     | Transthyretin amyloid<br>cardiomyopathy | Primary FDA approval<br>based on this <sup>6</sup> |
| DAPA-HF4              | Dapagliflozin | HFrEF                                   | Secondary (KCCQ)                                   |
| SUMMIT⁵ –<br>ongoing  | Tirzepatide   | HFpEF                                   | Primary                                            |

1. Redfors B et al. Eur Heart J. 2020;41(46):4399; 2. Ferreira JP et al. JACC Heart Fail. 2020;8(6):450. 3. Maurer MS et al. N Engl J Med. 2018;379(11):1016; 4. McMurray et al. N Engl J Med. 2019;381(21):2008; 5. ClinicalTrials.gov. NCT04847557. Available at: <a href="https://clinicaltrials.gov/ct2/show/NCT04847557">https://clinicaltrials.gov/ct2/show/NCT04847557</a>; 6. Pfizer Inc. Vyndagel® (tafamidis) prescribing information. 2021.



#### The 4th Indonesian Symposium on Heart Fallure and Cardiometabolic Disease EMPULSE: Patients treated with empagliflozin were 36% more likely to

Ö

InaHF

### experience a clinical benefit than those who received placebo





# **EMPULSE:** Primary endpoint subgroup analysis (1 of 2)

(षि))

Ü

|                          | Empagliflozin | Placebo  |                                     | Win rotio         | Interaction     |
|--------------------------|---------------|----------|-------------------------------------|-------------------|-----------------|
|                          | Number of     | patients |                                     | (95% CI)          | <i>p</i> -value |
| All patients             | 265           | 265      | ► <b>−</b> −                        | 1.36 (1.09, 1.68) |                 |
| HF status                |               |          |                                     |                   | 0.7590          |
| De novo                  | 88            | 87       | <b>⊢⊢</b> −−−1                      | 1.29 (0.89, 1.89) |                 |
| Decompensated chronic    | 177           | 178      | <b>⊢</b>                            | 1.39 (1.07, 1.81) |                 |
| Baseline diabetes status |               |          |                                     |                   | 0.5683          |
| Diabetic                 | 124           | 116      | <b>⊢</b>                            | 1.47 (1.07, 2.02) |                 |
| Non-diabetic             | 141           | 149      |                                     | 1.30 (0.97, 1.73) |                 |
| Age                      |               |          | -(:ARI) 2022                        |                   | 0.8889          |
| <70 years                | 116           | 129      |                                     | 1.38 (1.01, 1.90) |                 |
| ≥70 years                | 149           | 136      | <b>⊢</b>                            | 1.43 (1.06, 1.92) |                 |
| Sex                      |               |          |                                     |                   | 0.6923          |
| Male                     | 179           | 172      | <b>⊢</b>                            | 1.39 (1.06, 1.81) |                 |
| Female                   | 86            | 93       | <b>⊢</b>                            | 1.27 (0.88. 1.83) |                 |
| Region                   |               |          |                                     |                   | 0.0602          |
| Asia                     | 31            | 25       | ▶ <b>──</b> ►                       | 0.66 (0.34, 1.30) |                 |
| Europe                   | 168           | 171      | ⊢ <b>⊢</b>                          | 1.59 (1.20, 2.09) |                 |
| North America            | 66            | 69       | <b>⊢⊢</b>                           | 1.32 (0.87, 2.00) |                 |
|                          |               |          |                                     |                   |                 |
|                          |               |          | 0.25 0.5 1 2 4                      |                   |                 |
|                          |               |          | <→                                  |                   |                 |
|                          |               |          | Placebo better Empagliflozin better |                   |                 |



# **EMPULSE: Primary endpoint subgroup analysis (1 of 2)**

Ü

|                                                                                                    | Empagliflozin        | Placebo                                    |                                                                  | Win ratio                                                                                                         | Interaction                |
|----------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                    | Number of            | patients                                   |                                                                  | (95% CI)                                                                                                          | <i>p</i> -value            |
| All patients                                                                                       | 265                  | 265                                        |                                                                  | 1.36 (1.09, 1.68)                                                                                                 |                            |
| HF status                                                                                          |                      |                                            |                                                                  |                                                                                                                   | 0.7590                     |
| De novo                                                                                            | 88                   | 87                                         | F                                                                | 1.29 (0.89, 1.89)                                                                                                 |                            |
| Decompensated chronic                                                                              | 177                  | 178                                        | <b>⊢</b>                                                         | 1.39 (1.07, 1.81)                                                                                                 |                            |
| Baseline diabetes status                                                                           |                      |                                            |                                                                  |                                                                                                                   | 0.5683                     |
| Diabetic                                                                                           | 124                  | 116                                        |                                                                  | 1.47 (1.07, 2.02)                                                                                                 |                            |
|                                                                                                    |                      |                                            |                                                                  |                                                                                                                   |                            |
| Non-diabetic                                                                                       | 141                  | 149                                        |                                                                  | 1 5010.97, 1.75)                                                                                                  |                            |
| Non-diabetic<br>Age                                                                                | 141                  |                                            | ARD 200                                                          | )                                                                                                                 | 0.8889                     |
| Non-diabetic<br>Age<br><70 years                                                                   |                      | ical benefits                              | were consistent rec                                              | ardless <sup>1, 1.90</sup>                                                                                        | 0.8889                     |
| Non-diabetic<br>Age<br><70 years<br>≥70 years                                                      | The clini            | ical benefits                              | were consistent, reg                                             | gardless <sup>1, 1.90)</sup><br>5, 1.92)                                                                          | 0.8889                     |
| Non-diabetic<br>Age<br><70 years<br>≥70 years<br>Sex                                               | The clini<br>of whet | ical benefits<br>ther patients             | were consistent, reg<br>presented with de r                      | gardless <sup>1, 1.90)</sup><br>5, 1.92)<br>10vo or                                                               | 0.8889                     |
| Non-diabetic<br>Age<br><70 years<br>≥70 years<br>Sex<br>Male                                       | The clini<br>of whet | ical benefits<br>ther patients             | were consistent, reg<br>presented with de r                      | gardless<br>5, 1.92)<br>novo or<br>5, 1.81)                                                                       | 0.8889                     |
| Non-diabetic<br>Age<br><70 years<br>≥70 years<br>Sex<br>Male<br>Female                             | The clini<br>of whet | ical benefits<br>ther patients<br>decomper | were consistent, reg<br>presented with de r<br>nsated chronic HF | gardless<br>1, 1.90)<br>5, 1.92)<br>10vo or<br>5, 1.81)<br>8. 1.83)                                               | 0.8889<br>0.6923           |
| Non-diabetic<br>Age<br><70 years<br>≥70 years<br>Sex<br>Male<br>Female<br>Region                   | The clini<br>of whet | ical benefits<br>ther patients<br>decomper | were consistent, reg<br>presented with de r<br>nsated chronic HF | gardless<br>1, 1.90)<br>5, 1.92)<br>10vo or<br>5, 1.81)<br>8. 1.83)                                               | 0.8889<br>0.6923<br>0.0602 |
| Non-diabetic<br>Age<br><70 years<br>≥70 years<br>Sex<br>Male<br>Female<br>Region<br>Asia           | The clini<br>of whet | ical benefits<br>ther patients<br>decomper | were consistent, reg<br>presented with de r<br>nsated chronic HF | <b>5</b> , 1, 1.90)<br>5, 1.92)<br>5, 1.81)<br>5, 1.83)<br>0.66 (0.34, 1.30)                                      | 0.8889<br>0.6923<br>0.0602 |
| Non-diabetic<br>Age<br><70 years<br>≥70 years<br>Sex<br>Male<br>Female<br>Region<br>Asia<br>Europe | The clini<br>of whet | ical benefits<br>her patients<br>decomper  | were consistent, reg<br>presented with de r<br>nsated chronic HF | <b>pardless</b><br><b>1</b> , 1.90)<br>5, 1.92)<br>5, 1.81)<br>8. 1.83)<br>0.66 (0.34, 1.30)<br>1.59 (1.20, 2.09) | 0.8889<br>0.6923<br>0.0602 |



# **EMPULSE:** Primary endpoint subgroup analysis (2 of 2)

Ü

InaHF

ΙΦ

|                                                                                                             | Empagliflozin       | Placebo  |                      | Min rotio         | late resting |
|-------------------------------------------------------------------------------------------------------------|---------------------|----------|----------------------|-------------------|--------------|
|                                                                                                             | Number of           | patients |                      | (95% CI)          | p-value      |
| All patients                                                                                                | 265                 | 265      | ► <b>−</b> −         | 1.36 (1.09, 1.68) |              |
| NT-proBNP at baseline, pg/mL                                                                                |                     |          |                      |                   | 0.7904       |
| <median< td=""><td>125</td><td>130</td><td><b>└──●</b>──1</td><td>1.36 (0.99, 1.85)</td><td></td></median<> | 125                 | 130      | <b>└──●</b> ──1      | 1.36 (0.99, 1.85) |              |
| ≥Median                                                                                                     | 130                 | 126      | <b>⊢</b>             | 1.44 (1.06, 1.96) |              |
| eGFR (CKD-EPI) at baseline, mL/min                                                                          | 1.73 m <sup>2</sup> |          |                      |                   | 0.7562       |
| <60                                                                                                         | 161                 | 145      | <b>⊢</b>             | 1.38 (1.04, 1.83) |              |
| ≥60                                                                                                         | 88                  | 106      |                      | 1.48 (1.04, 2.13) |              |
| Atrial fibrillation/flutter at baseline                                                                     |                     |          | -(2 A R D 20)        |                   | 0.1129       |
| No                                                                                                          | 123                 | 133      |                      | 1.68 (1.22, 2.32) |              |
| Yes                                                                                                         | 142                 | 132      | ► <mark>+ ●</mark> 1 | 1.18 (0.88, 1.59) |              |
| Baseline LVEF, %                                                                                            |                     |          |                      |                   | 0.9008       |
| ≤40                                                                                                         | 182                 | 172      |                      | 1.35 (1.04, 1.75) |              |
| >40                                                                                                         | 76                  | 93       | · <b>·</b>           | 1.39 (0.95, 2.03) |              |
|                                                                                                             |                     |          |                      |                   |              |
|                                                                                                             |                     |          |                      |                   |              |
|                                                                                                             |                     |          |                      |                   |              |
|                                                                                                             |                     |          |                      |                   |              |
|                                                                                                             |                     |          | · · · · ·            |                   |              |
|                                                                                                             |                     |          | 0.25 0.5 1 2         | 4                 |              |

Placebo better Empagliflozin better



Т

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

# **EMPULSE:** Primary endpoint subgroup analysis (2 of 2)

Ü

InaHF

(1)

|                                                                                                 |           |               |                       | Win ratio                   | Interaction     |
|-------------------------------------------------------------------------------------------------|-----------|---------------|-----------------------|-----------------------------|-----------------|
|                                                                                                 | Number of | patients      |                       | (95% CI)                    | <i>p</i> -value |
|                                                                                                 | 265       | 265           |                       | 1.36 (1.09, 1.68)           |                 |
|                                                                                                 |           |               |                       |                             | 0.7904          |
| <median< td=""><td>125</td><td>130</td><td>II</td><td>1.36 (0.99, 1.85)</td><td></td></median<> | 125       | 130           | II                    | 1.36 (0.99, 1.85)           |                 |
| ≥Median                                                                                         | 130       | 126           |                       | 1.44 (1.06, 1.96)           |                 |
|                                                                                                 | in/       |               |                       |                             | 0.7562          |
| <60                                                                                             | The clin  | ical benefits | were independent (    | of LVEF <sup>4, 1.83)</sup> |                 |
| ≥60                                                                                             | (inc      | luding patier | nts with HErEE or HED | <b>FF</b> )                 |                 |
|                                                                                                 | ie Circ   |               |                       | -2                          | 0.1129          |
| No                                                                                              |           |               |                       |                             |                 |
| Yes                                                                                             | 142       | 132           |                       | 1.18 (0.88, 1.59)           |                 |
| 3aseline LVEF, %                                                                                |           |               |                       |                             | 0.9008          |
| ≤40                                                                                             | 182       | 172           |                       | 1.35 (1.04, 1.75)           |                 |
| >40                                                                                             | 76        | 93            | ▶ <b>↓↓</b>           | 1.39 (0.95, 2.03)           |                 |

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

# **EMPULSE: eGFR change from baseline (mL/min)**

O



## **EMPULSE: Conclusions**







Patients hospitalized for acute HF treated with empagliflozin were 36% more likely to experience a clinical benefit\* versus patients on placebo The clinical benefits were consistent in patients with HFrEF or HFpEF, and in patients with de novo or decompensated chronic heart failure Empagliflozin was **well tolerated**, with overall safety data consistent with previous studies

\*Evaluated with a win ratio based on a composite of death, number of HFEs (including HHFs, urgent HF visits and unplanned outpatient visits), time to first HFE and change from baseline in KCCQ-TS after 90 days of treatment. HF, heart failure; HFE, heart failure event; HHF, hospitalization for heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; KCCQ-TSS, Kansas City Cardiomyopathy Questionnaire Total Symptom Score. Boehringer Ingelheim. Data on file.

# Take home message

- Repeated hospitalization for HF is associated with increased mortality
- There is an urgent unmet need to improve care for patients hospitalized with acute or acute decompensated heart failure
- From the EMPULSE trial, the clinical benefits of Empagliflozin were consistent, regardless the LVEF, whether patients presented with de novo or decompensated chronic HF





# TERIMA KASIH I-HEFCARD 2024

O