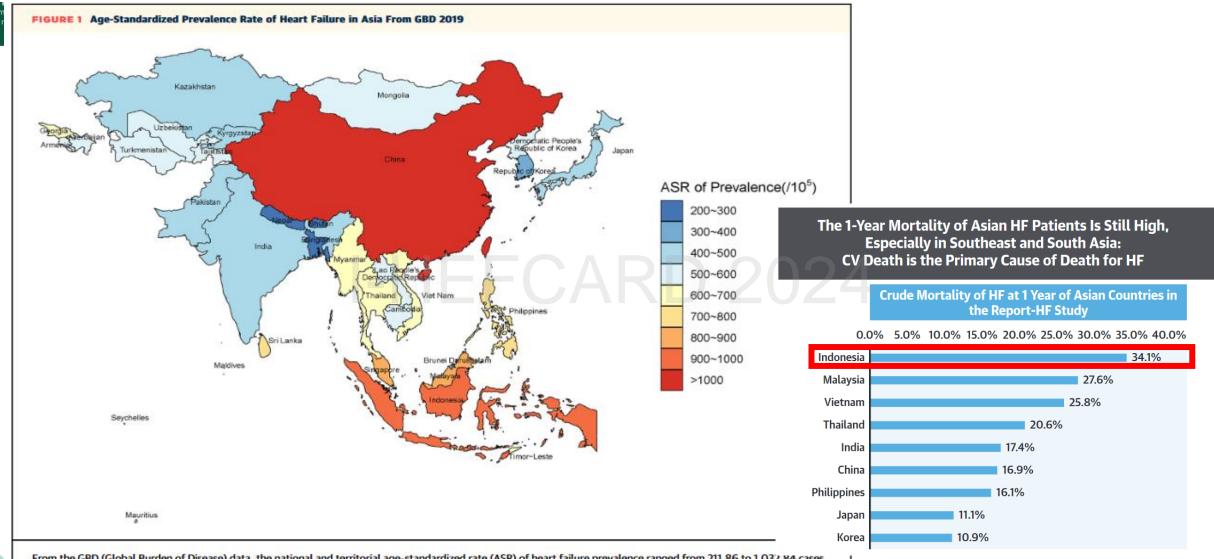


Choosing The Right Path for CV Mortality Reduction in Heart Failure

Habibie Arifianto, MD, PhD

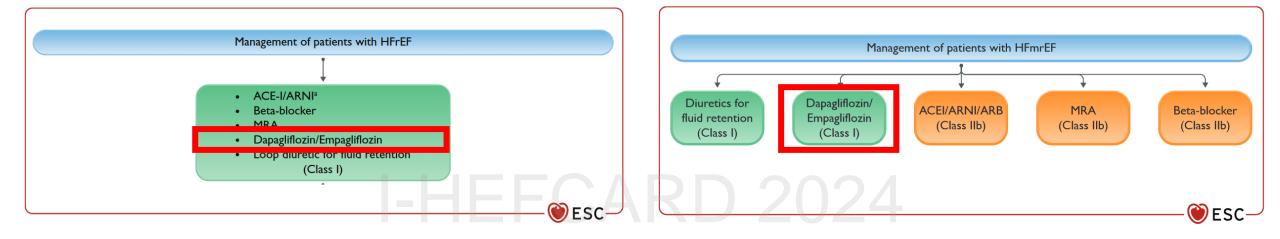
Sebelas Maret Heart Failure Clinic

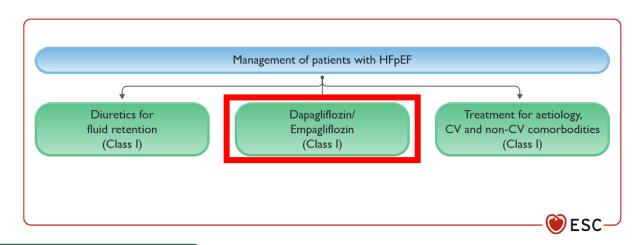
Department of Cardiology & Vascular Medicine – Universitas Sebelas Maret Hospital


🞯 @ina.hf | 😥 +62 811-1900-8855 | 🗹 pokjahf@gmail.com

Disclaimer

- The meeting and material are sponsored by PT. AstraZeneca Indonesia.
- This is a promotional meeting.
- The speaker in this meeting receive honoraria from PT. AstraZeneca Indonesia.
- Pertemuan ilmiah dan materi dalam pertemuan ini disponsori oleh PT. AstraZeneca Indonesia.
- Pertemuan ilmiah ini adalah pertemuan yang bersifat promosi.
- Pembicara dalam pertemuan ilmiah ini menerima honoraria dari PT. AstraZeneca Indonesia.


How Big is HF in Indonesia?



From the GBD (Global Burden of Disease) data, the national and territorial age-standardized rate (ASR) of heart failure prevalence ranged from 211.86 to 1,032.84 cases per 100,000 population in Asia. China (1,032.84), Indonesia (900.90), and Malaysia (809.47) are the 3 highest nations in terms of ASR for prevalence of HF in 2019. Conversely, Nepal (211.86), Bhutan (255.54), and Bangladesh (275.00) reported the lowest rates.

Which Drug Reduced Death on HF Across LVEF?

European Heart Journal, 2023, https://doi.org/10.1093/eurheartj/ehad195

Ü

Relative Risk Reduction of Different Pharmacological Treatment Combinations for Heart Failure

Treatment	CV Mortality or HF Hos	pitalization	HR	(95% CI)
ARNI + BB + MRA + SGLT2			0.36 (0	.29-0.46)
ARNI + BB + MRA + Vericiguat			0.43 (0	.34-0.55)
ARNI + BB + MRA + Omecamtiv			0.44 (0	.35-0.56)
ACEI + BB + MRA + IVA			0.49 (0	.39-0.61)
ACEI + BB + MRA + Vericiguat	-(CAR+)2	024	0.54 (0	.43-0.67)
ACEI + ARB + BB + Dig			0.73 (0	.62-0.85)
ARNI + BB + MRA			0.47 (0	.38-0.58)
ACEI + BB + MRA			0.58 (0	.47-0.71)
ARB + BB			0.65 (0	.55-0.77)
ARNI + BB			0.68 (0).58-0.79)
ACEI + BB		-	0.84 (0	.73-0.96)
ACEI + BB + Dig		-	0.84 (0).73-0.96)
ACEI + Dig			1.00	
BB			0.75 (0	.65-0.87)
	0.25 0.5	1	2	

Tromp J. et al .J Am Coll Cardiol HF 2022;10:73-84

Heart Failure in Numbers

	Total (N=18102)	Central and South America (n=2525)	Eastern Europe (n=2761)	Eastern Mediterranean region and	North America (n=1565)	Southeast Asia (n=2292)	Western Europe (n=3489)	Western Pacific (n=3298)	p value*
				Africa (n=2172)					
(Continued from previous page)									
Medication at 6-month follow-up									
ACEi or ARB†	9189 (59%)	1272 (61%)	1704 (69%)	1140 (63%)	712 (53%)	876 (44%)	1923 (64%)	1562 (55%)	<0.0001
β blocker†	10437 (67% <mark>)</mark>	1400 (67%)	1883 (76%)	1222 (68%)	1057 (78%)	925 (47%)	2330 (78%)	1620 (57%)	<0.0001
Diuretics†	11176 (67%)	1345 (65%)	1923 (78%)	1376 (63%)	1078 (80%)	1326 (67%)	2516 (84%)	1614 (57%)	<0.0001
MRA†	6608 (43%)	9539 (45%)	1289 (52%)	573 (32%)	469 (35%)	528 (27%)	1411 (47%)	1399 (50%)	<0.0001
Length of stay, days†	8 (5–12)	8 (5–14)	9 (6–13)	6 (4–10)	6 (4–10)	6 (4–8)	9 (6–13)	9 (7–14)	<0.0001
1-year mortality	3461 (20%)	547 (23%)	439 (16%)	472 (22%)	324 (21%)	470 (21%)	668 (20%)	541 (17%)	<0.0001
Hospitalisation									
Hospitalised for any cause	6674 (38%)	799 (33%)	1062 (39%)	773 (36%)	955 (62%)	428 (19%)	1583 (47%)	1074 (34%)	<0.0001
Hospitalised for heart failure	3940 (22%)	482 (20%)	654 (24%)	478 (23%)	626 (41%)	240 (11%)	826 (24%)	634 (20%)	<0.0001
Death or heart failure hospitalisation	6928 (39%)	972 (40%)	1038 (38%)	913 (43%)	830 (54%)	673 (30%)	1395 (41%)	1107 (35%)	<0.0001

InaHF

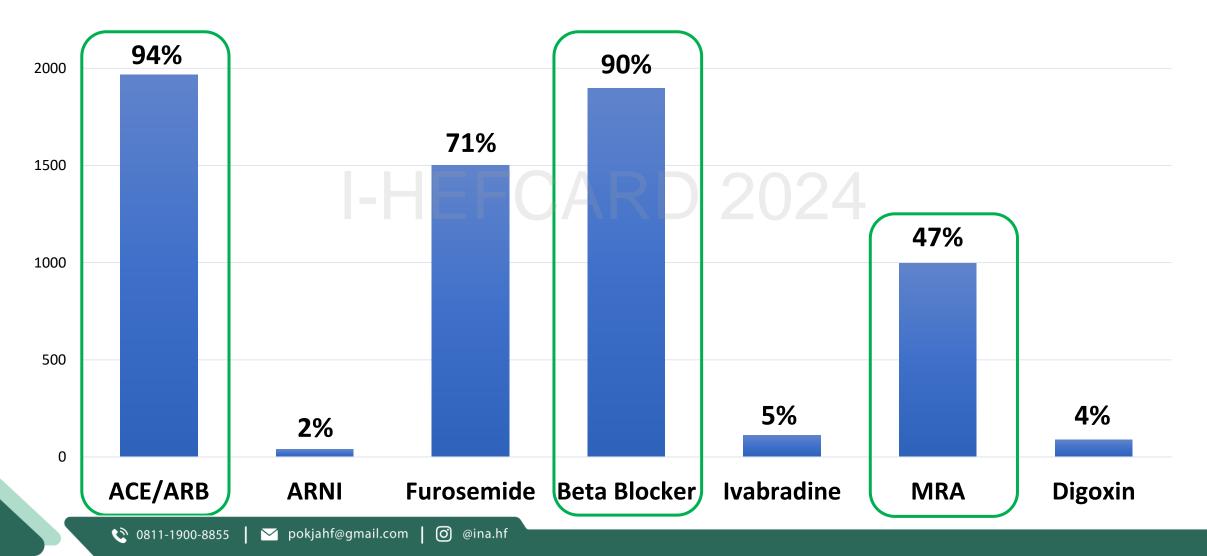
Data are n (%), unless otherwise stated. BMI=body-mass index. DCHF=decompensated chronic heart failure. NYHA=New York Heart Association. LVEF=left ventricular ejection fraction. JVP=jugular venous pressure. ACEi=angiotensin-converting enzyme inhibitor. ARB=angiotensin receptor blocker. MRA=mineralocorticoid receptor antagonist. *All comparisons p<0.001. †No data missing.

Table 1: Differences between patients according to region

Tromp J, et al. Lancet Glob Health 2020; 8: e411-22

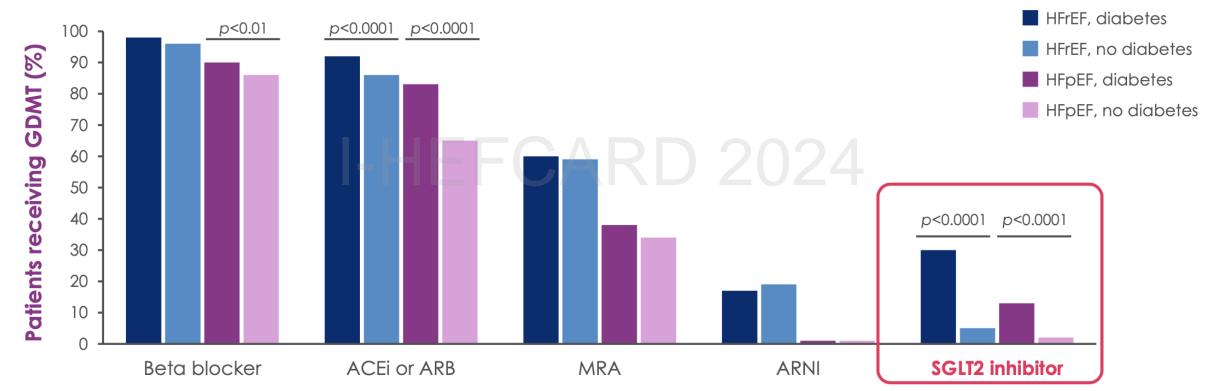
• 2103 heart failure patients from 10 healthcare facilities in Indonesia.

5


ÍnaHF

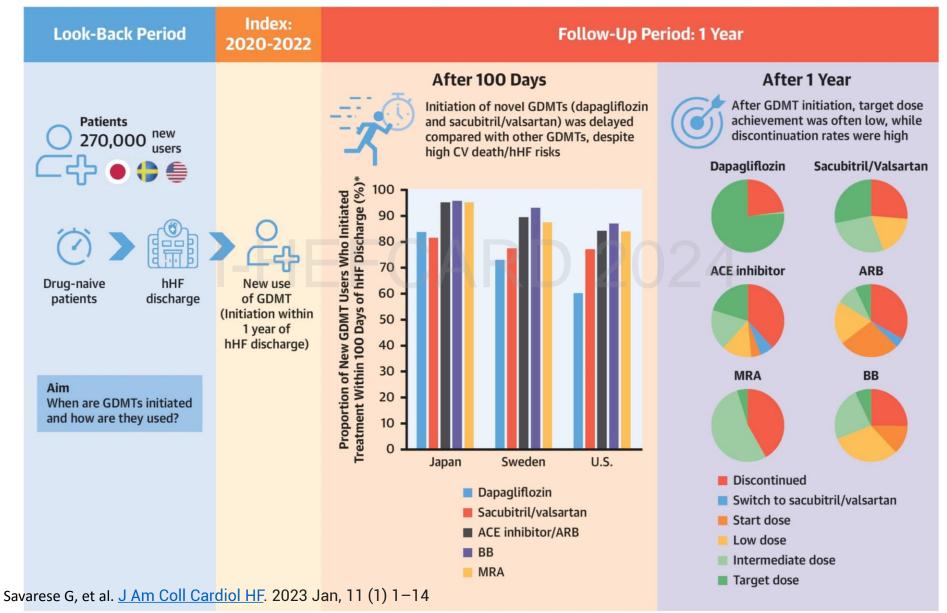
	No. of patients	Percentage (%)	INDONESIA
RSUD Tangerang, Banten	522	24.8	BANGKOKO VIETNAM OMANILA
RS Universitas Sebelas Maret, Solo	482	22.9	PHNOM PENHO . HO CHI MINH CITY PACIFIC
RS dr Sardjito, Yogyakarta	403	19.2	THAILAND (Saigon) PHILIPPINES OCEAN BANDAR SERI PALAU
RS Harapan Kita, Jakarta	223	10.6	KUALA BEGAWAN LUMPUR BRUNELQ MALAYSIA
RS Awal Bros, Pekanbaru	132	6.3	Sumatra Kalimantan
RSUD Cibinong, Jawa Barat	93	4.4	Sulawesi Maluku Irian Jaya
RS Hasan Sadikin, Bandung	72	3.4	Java Bali Flores
RSUD Arifin Achmad, Pekanbaru	65	3.1	INDIAN Lombok Komodo EAST Z
RSPAD Gatot Subroto, Jakarta	60	2.9	• Darwin
RSUP Adam Malik, Medan	51	2.4	0500 km
Total	2103	100	0 300 miles AUSTRALIA

2500


MEDICATIONS PRESCRIBED IN HF CLINIC

Ũ

Newer GDMTs are Underutilized in HF Patients



ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor–neprilysin inhibitor; GDMT, guideline-directed medical therapy; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist; SGLT2, sodium-glucose co-transporter-2. Figure redrawn from data in Table 1 of Canonico ME et al. JACC Heart Fail. 2022;10:989.

U

ÍnaHF

Initiation, Titration to Target Dose, and Discontinuation of GDMT Among New User after hHF

Treatment Patterns, Outcomes, and Persistence to Newly Started HF Medications in Patients with Worsening HF: A Cohort Study from US and Germany

Retrospective cohort study of patients with prevalent HF and a HFH from 2016-19

1 year persistence (no treatment gap of > 2 months) to HF medications among new users

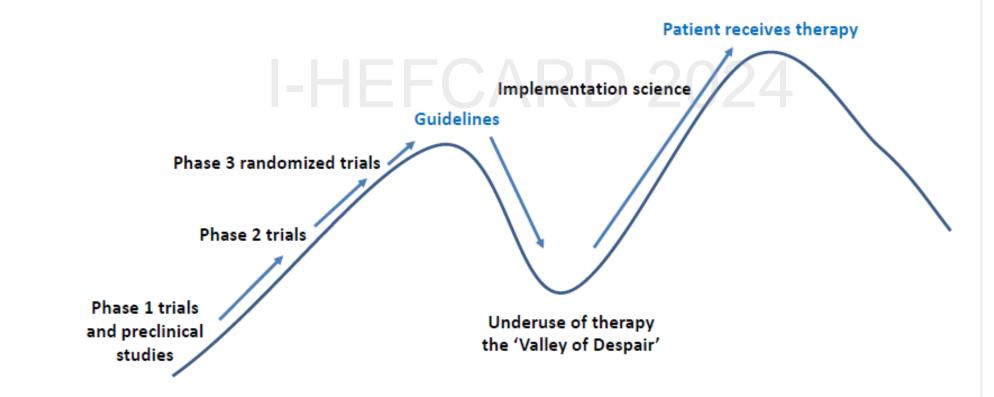

Medication	Germany			USA		
	New users N	Persistence (%)	Mean time to discon- tinuation, days (SD)	New users N	Persistence (%)	Mean time to dis- continuation, days (SD)
Beta-blocker	2530	63.4	161.3 (85.7)	3009	50.1	132.1 (100.1)
ACE inhibitor	2263	$_{48.3}$	151.1 (82.3)	3001	^{50.1} 33.5	119.7 (96.4)
ARB	1742	61.0	149.6 (87.5)	2834	38.2	123.8 (97.3)
MRA	4277	28.1	147.4 (86.0)	5526	39.9	126.7 (97.6)
Digoxin/digitoxin	1048	51.5	158.7 (87.0)	1896	43.7	123.4 (95.8)
Ivabradine	164	67.1	158.8 (95.2)	95	44.2	123.5 (94.4)
ARNI	851	76.3	142.6 (102.4)	2142	47.2	133.6 (101.5)
SGLT2i	271	60.1	153.3 (105.7)	239	41.4	133.1 (98.3)
Loop diuretics	4637	54.1	155.1 (90.3)	5016	41.8	128.2 (99.20)
			~ 5 months			~ 4 months

Michel A et al. American Journal of Cardiovascular Drugs 2024; https://doi.org/10.1007/s40256-024-00643-7.

Contemporary guideline-directed medical therapy in de novo, chronic, and worsening HF patients: First data from the TITRATE-HF study

TITRATE-HF: ongoing long-term HF registry conducted in the Netherlands. Overall, 4288 patients from 48 hospitals were included; 1732 presented de novo, 2240 chronic, and 316 with worsening HF.

Percentage of target dose for each drug class, stratified by <50% vs 50%-100% vs ≥100% of target dose Differences in GDMT use in HFrEF patients between participating sites with ≥50 enrolled patients



Malgie J et al. European Journal of Heart Failure (2024) doi:10.1002/ejhf.3267

Why There's Unmeet Point between Guidelines and Real World Data?

The false peak of guidelines and the 'Valley of Despair'

65

Which path do I choose to reduce mortality in my HF patient?

Clinical Inertia

"the lack of treatment intensification in a patient not at evidence based goals for care..." Principal factors : System-related (20%), patient-related (30%), physician-related (50%)

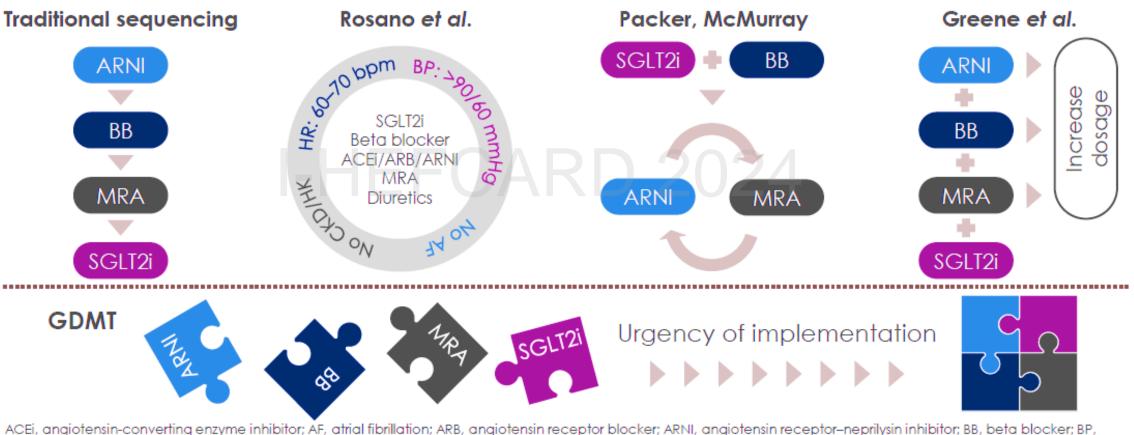
The main causes for non-prescription of GDMT in HF:

	QUALIFY (Komajda M, et al, 2016)	ESC HF Long-Term Registry (Crespo-Leiro MG, et al. 2015)	TSOC-HFrEF (Chang HY, et al. 2017)
ACEi/ARB	Worsening renal function, hypotension, cough	Worsening renal function, hypotension	Worsening renal function
BB	Worsening of asthma & COPD, Hypotension, bradycardia, fatigue	Hypotension, bronchospasm	Worsening of asthma & COPD, older age
MRA	Hyperkalemia, renal dysfuction	Hyperkalemia, renal dysfuction	Renal dysfuction, older age

Physician Related Factor :

- Physician lack of awareness of the importance of reaching target dose
- Physician forgot to increase dose
- Physician do not see an indication
- Physician forget to prescribe
- Physician concerns about AE

ÍnaHF

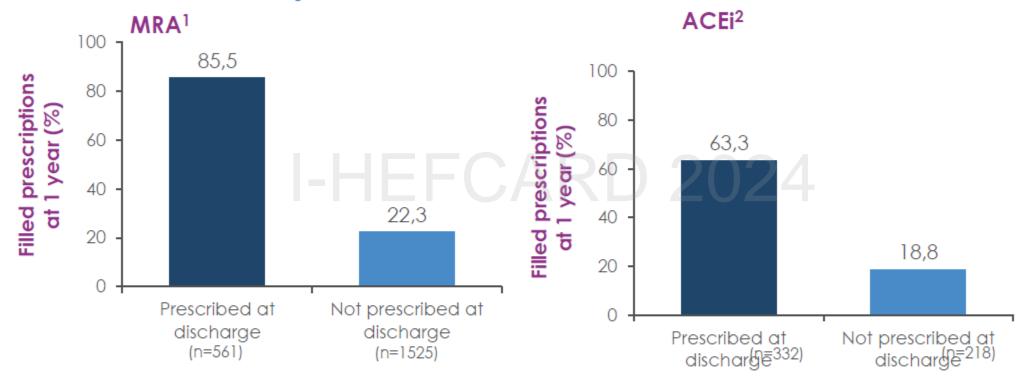


Sequencing in HFrEF:

Ů

ÍnaHF

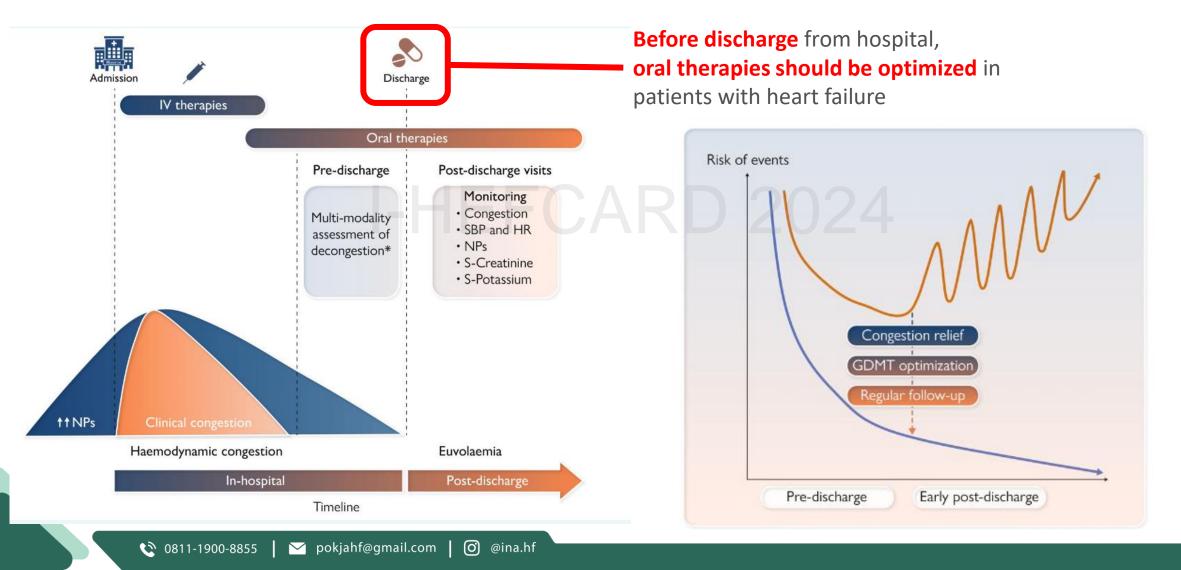
Guidelines tell us *what* to do, but not how to do it!


ACEi, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; BB, beta blocker; BP, blood pressure; bpm, beats per minute; CKD, chronic kidney disease; GDMT, guideline-directed medical therapy; HFrEF, heart failure with reduced ejection fraction; HK, hyperkalaemia; HR, heart rate; MRA, mineralocorticoid receptor antagonist; SGLT2i, sodium-glucose co-transporter-2 inhibitor. Adapted from Malgie J et al. Heart Fail Rev. 2023;28:1221. References cited: Rosano GMC et al. Eur J Heart Fail. 2021;23:872; Packer M, McMurray JJV. Eur J Heart Fail. 2021;23:882; Greene SJ et al. JAMA Cardiol. 2021;6:743.

Increase adherence to heart failure guidelines by initiating treatment in hospital

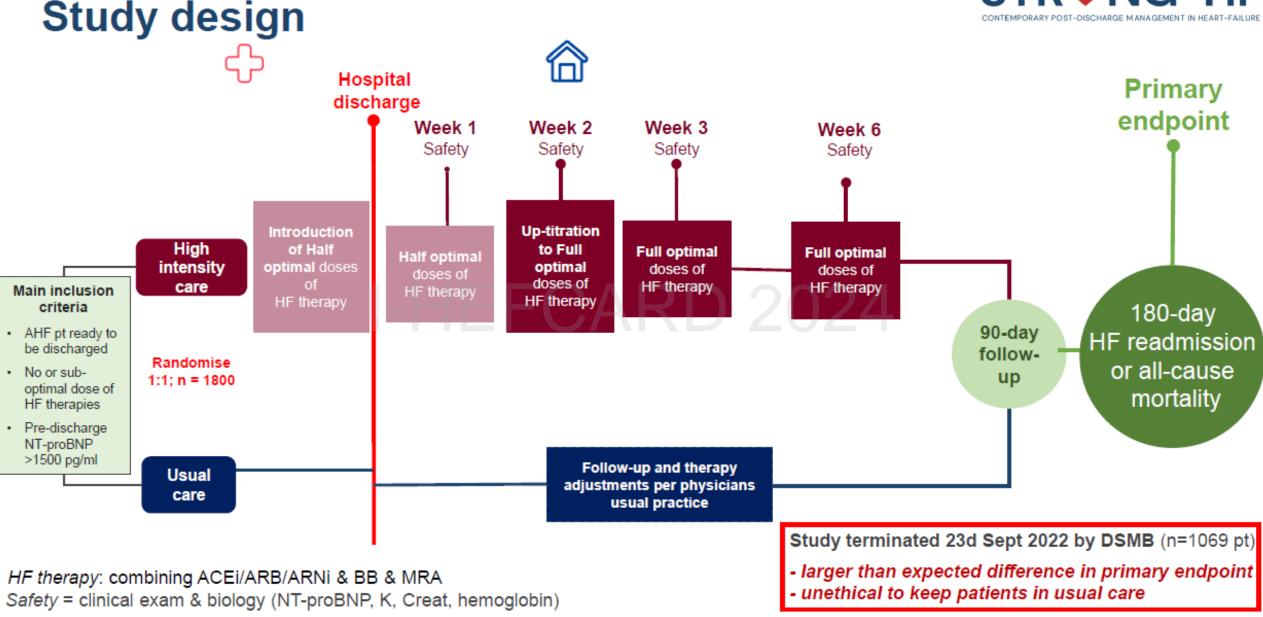
Ü

InaHF



Early treatment initiation of GDMT in the hospital is associated with improved adherence

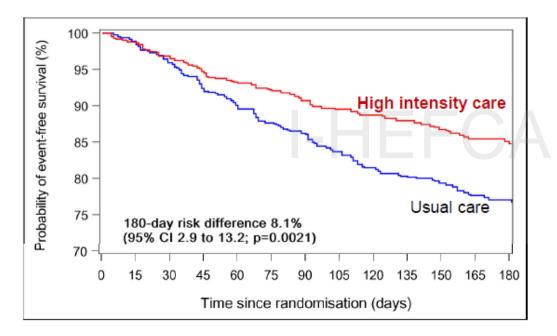
ACEi, angiotensin-converting enzyme inhibitor; GDMT, guideline-directed medical therapy; MRA, mineralocorticoid receptor antagonist. 1. Curtis LH et al. Am Heart J. 2013;165:979; 2. Butler J et al. J Am Coll Cardiol. 2004;43:2036.



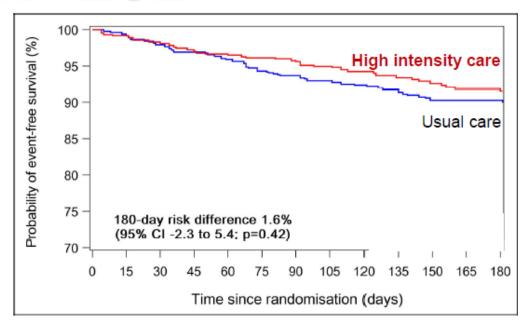
Hospitalization is a key opportunity to optimize GDMT Management of patients with HF according to hospitalization phase

Ů

STRUNG-HF


ACEi, angiotensin converting enzyme inhibitors; AHF, acute heart failure; ARB, angiotensin receptor blockers; BB, beta blockers; HF, heart failure; MRA, mineralcorticoid receptor antagonists; NT-proBNP, N-terminal pro B-type natriuretic peptide

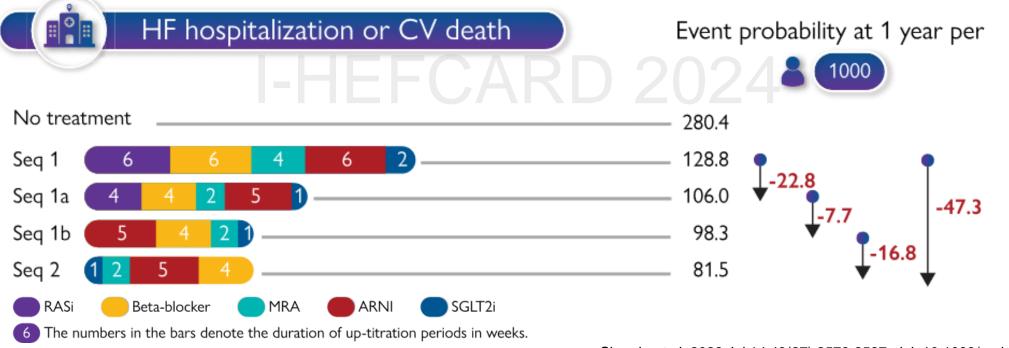
Mebazaa A, LBCT presentation at the AHA 2022


Primary endpoint: 180-Day Readmission for HF or All-Cause Death

1

Secondary endpoints: Change from Baseline to Day 90 in EQ-5D VAS

High Intensity	Usual Care	Treatment effect	P value
10.7 (0.9)	7.2 (0.9)	3.5 (1.7 to 5.2)	< 0.0001


180-Day All-Cause Death

Mebazaa A, LBCT presentation at the AHA 2022

Speed matters: Models of optimized treatment sequencing in HFrEF

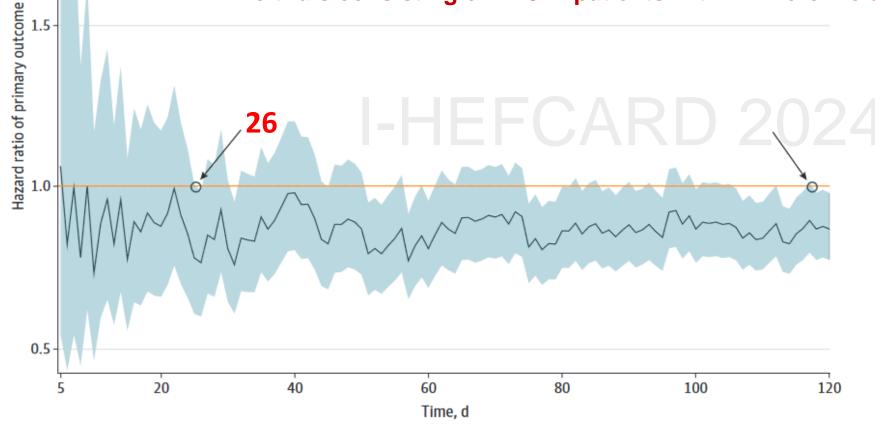
 Initiating an SGLT2 inhibitor and an MRA first in the treatment sequence vs conventional sequence → achieves quadruple therapy faster and may prevent more deaths and hospital admissions

Shen L, et al. 2022 Jul 14;43(27):2573-2587. doi: 10.1093/eurheartj/ehac210

Time is Prognosis!

Recommendation Table 3 — Recommendation for pre-discharge and early post-discharge follow-up of patients hospitalized for acute heart failure

Recommendation EECARD 2	Class ^a	Level ^b	
An intensive strategy of initiation and rapid up-titration of evidence-based treatment before discharge and during frequent and careful follow-up visits in the first 6 weeks following a HF hospitalization is recommended to reduce the risk of HF rehospitalization or death. ^{c,d,e 16}	I	В	© ESC 2023



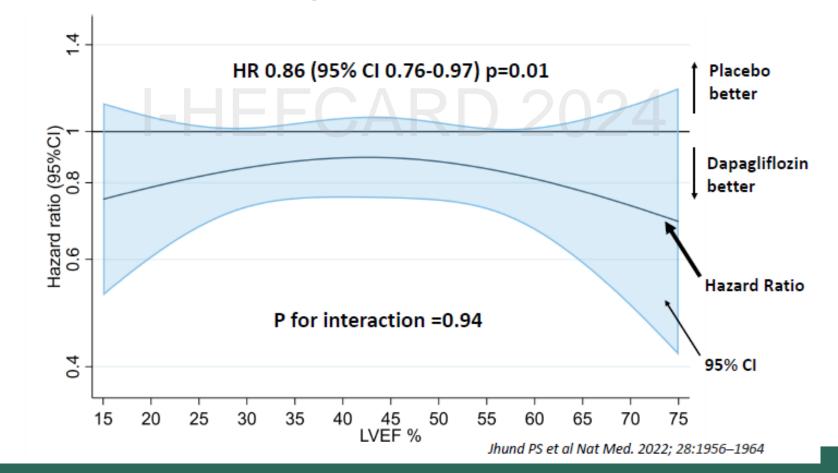
2.0

B SGLT2 inhibitors vs placebo for the primary efficacy outcome in the first 118 days

Time is Prognosis : Time to Benefit of Sodium-Glucose Cotransporter-2 Inhibitors Among Patients With Heart Failure

What is the time to benefit of SGLT2 inhibitors in individuals with HF? Five trials consisting of 21 947 patients with HF were included

Shaded regions indicate 95% Cls. In panel B, left arrow indicates the time to first nominal statistically significant clinical benefit (26 days [0.86 months]); right arrow, time to consistently reach statistically significant clinical benefit and sustain it thereafter (118 days [3.93 months]). SGLT2 indicates sodiumglucose cotransporter 2.

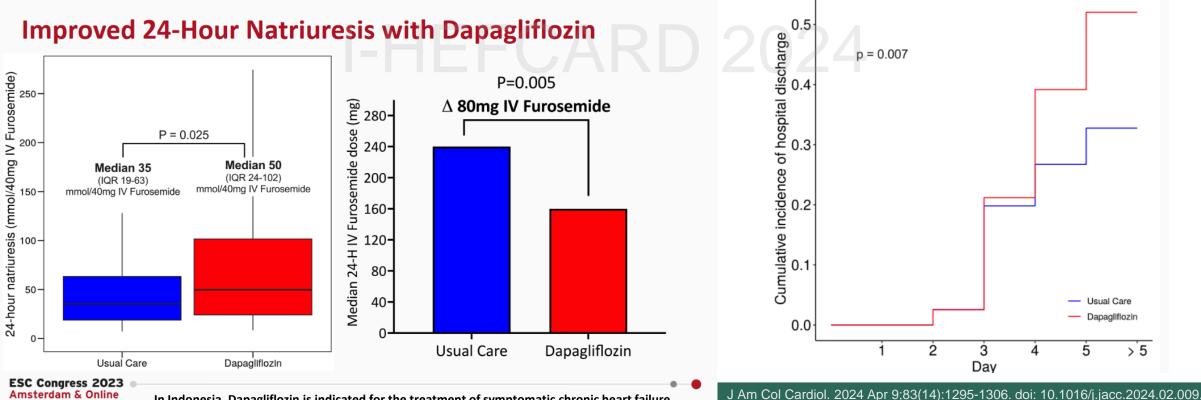


SGLT2i Reduced CV Mortality Across EF

DAPA-HF & DELIVER pooled: Cardiovascular death

Ü

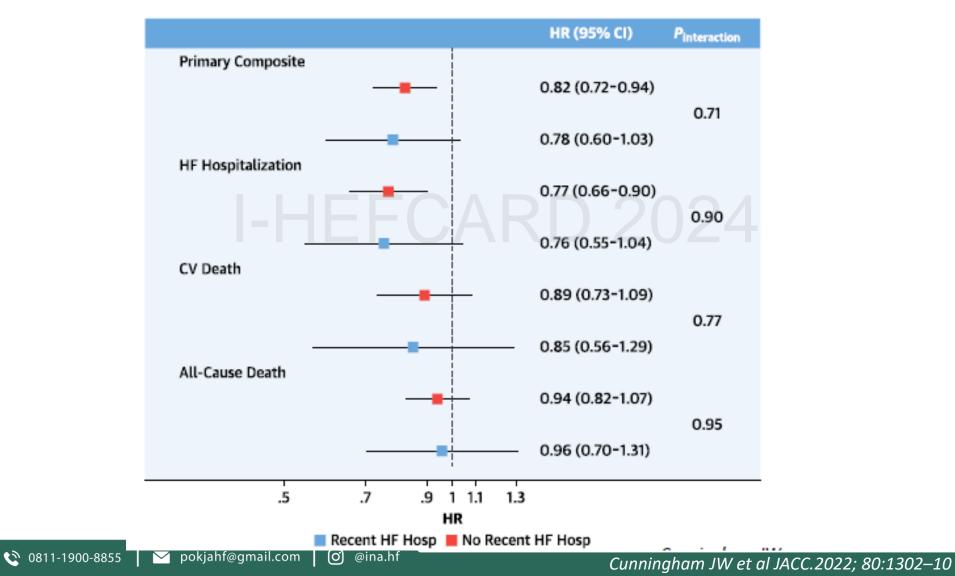
InaHF


0811-1

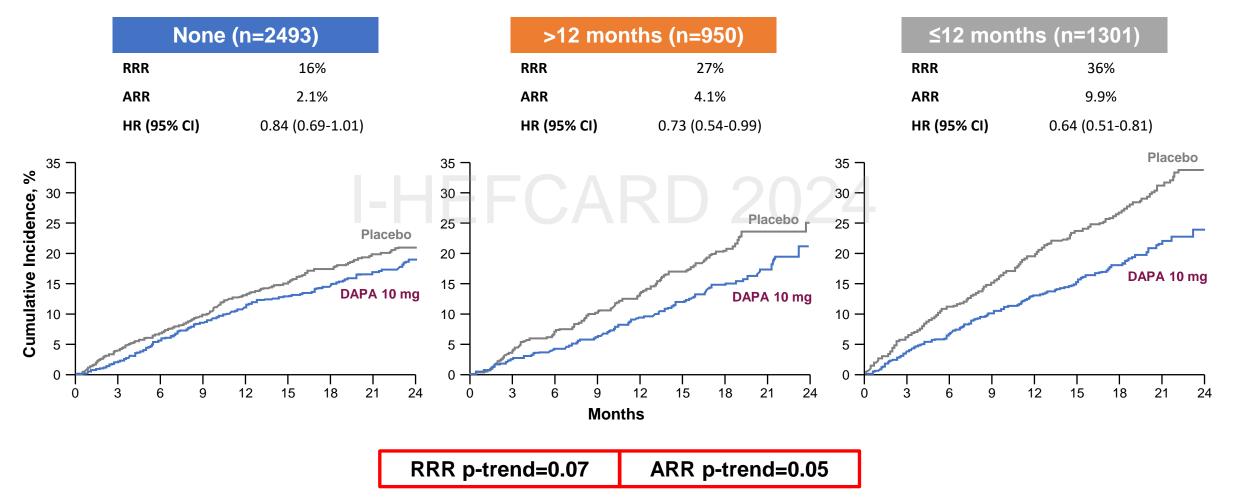
Acute $HF \rightarrow$ early initiation of dapagliflozin in AHF to safely facilitate decongestion and GDMT optimization

ÍnaHF

- Dapagliflozin improve diuretic efficiency by:
 - Increased natriuresis and diuresis per 40mg of IV furosemide
 - Decreased total dose and duration of loop diuretics required ٠
 - **Decreased time to hospital discharge** •



Amsterdam & Online In Indonesia, Dapagliflozin is indicated for the treatment of symptomatic chronic heart failure.


Using dapagliflozin in recently hospitalised patients: DELIVER

Ü

CV Death or Worsening HF^a by Timing of Most Recent hHF^b

^aWorsening HF includes hHF or urgent HF visit; ^bTiming of hHF relative to trial enrollment.

ARR = absolute risk reduction; CV = cardiovascular; DAPA = dapagliflozin; HF = heart failure; hHF = hospitalization for heart failure; HR = hazard ratio; RRR = relative risk reduction.

Berg DD et al. JAMA Cardiol. 2021;6:499-507.

DAPA-HF Background MRA

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

Hyperkalemia Events in the DAPA-HF Trial

Dapagliflozin may attenuate the risk of moderate/severe hyperkalemia in patients treated with an MRA at baseline

	Dapagliflozir	10 mg	Placeb	0				
Endpoint	n/N (%)	Rate per 100 pt-yrs	n/N (%)	Rate per 100 pt-yrs	HR (95% CI)	p-value	Interaction p-value ^a	
Mild Hyperkalemia (>5.5 mmol/L)								
No MRA at baseline	63/660 (9.6)	7.2	57/682 (8.4)	6.4	1.20 (0.84-1.72)	0.316	0.12	
MRA at baseline	180/1632 (11.0)	8.7	204/1625 (12.6)	10.0	0.86 (0.70-1.05)	0.144	0.13	
Moderate/Severe Hyperkalemia (>6.0 mmol/L)							
No MRA at baseline	13/675 (1.9)	1.4	11/695 (1.6)	1.2	1.17 (0.52-2.62)	0.707	0.08	
MRA at baseline	21/1683(1.3)	0.9	40/1666(2.4)	1.8	0.50 (0.29-0.85)	0.01	0.08	

^aA non-significant result for an interaction test can be interpreted as consistency of effect across the subgroup.²

HR = hazard ratio; MRA = mineralocorticoid-receptor antagonist; pt-yrs = patient-years.

InaHF

1. Shen L et al. JACC Heart Fail. 2021;9:254-264; 2. Alosh M et al. J Biopharm Stat. 2015;25:1161-1178.

Side effects and initiation barriers for SGLT2 inhibitors *A systematic review and meta-analysis*

A Hypotension

	Study	SG	LT2i		Con	trol					
		Events	Total events	Event rate	Events	Total events	Event rate	Risk	ratio (95%CI)		•
	DAPA HF	7	2,368	0.30%	11	2,368	0.46%	⊢ •		0.64	(0.25-1.64)
	EMPEROR-Reduced SOLOIST-WHF	176 36	1,863 605	9.45% 5.95%	163 28	1,867 611	8.73% 4.58%	ь Н	● - •	1.08 1.30	(0.88-1.33) (0.80-2.10)
	TOTAL	219	4,836	4.53%	202	4,846	4.17%	0.0 0.5 1	1.0 1.5 2.0 2.5		(0.91-1.31) p=0.36
								Favours control	Favours SGLT2i		
В	Rate of h	ypot	ensio	n							
				-		laceb			4.5% SGLT2-i		
	~~~~		õõ	ā		xces	sons	GLT2-i	4.1% Placebo		
	00000	ĴÕĈ	οõ	õ		lo hyp	ooten	sion			
	00000	200	00	0							
	00000	DOC	000	õ							
	0000		000	-	Exces	sofhy	poten	sion on SGLT	2-iis 0.4% 🖨 hypote	ension	
	00000		000	õ '	-				e expected in <b>1 from</b>	250	
	00000		00	0	patien	ts trea	ted w	ith SGLT2-i			

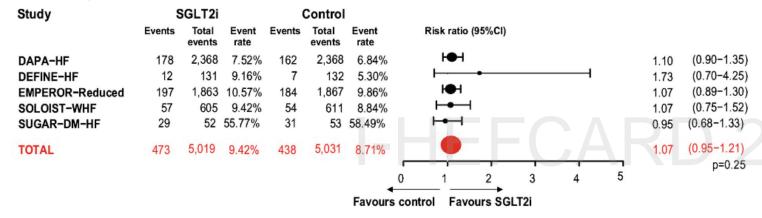
 reported in 4.5% on SGLT2 inhibitors vs. 4.1% of patients on placebo (RR 1.09, 95% CI 0.91– 1.31, p = 0.36)

U

InaHF

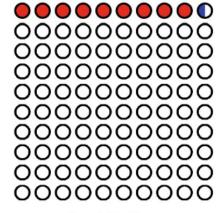
 The excess of hypotension on SGLT2i was 0.4% over placebo → 1/250 patient on treatment with SGLT2 inhibitors develop symptomatic hypotension as a consequence of SGLT2i therapy

Total 100%


0000000000

Vukadinovic D, et al. Eur J of Heart Fail (2022) 24, 1625–1632. doi:10.1002/ejhf.2584




### **Side effects and initiation barriers for SGLT2 inhibitors** *A systematic review and meta-analysis*

Volume depletion



В

Rate of volume depletion



Placebo
Excess on SGLT2-i
No volume depletion

9.4% SGLT2-i

8.7% Placebo

Excess of volume depletion on SGLT2-i is 0.7% volume depletion truly-related to SGLT2-i could be expected in 1 from 143 patients treated with SGLT2-i • Volume depletion was defined: dehydration, hypovolaemia or hypotension.

InaHF

- Volume depletion → 9.4% on SGLT2i and in 8.7% on placebo (RR 1.07, 95% CI 0.95–1.21, p = 0.25) (Figure 2A) (p for heterogeneity = 0.80, I2 = 0%)
- The excess of volume depletion on SGLT2i was 0.7% over placebo, indicating that approximately 1/143 patients on treatment with SGLT2i would develop signs of volume depletion as a consequence of SGLT2 inhibitor therapy

Total 100%



В

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

### Side effects and initiation barriers for SGLT2 inhibitors A systematic review and meta-analysis

(0.30 - 0.82)

(0.48 - 1.00)

(0.55 - 1.59)

(0.13 - 73.36)

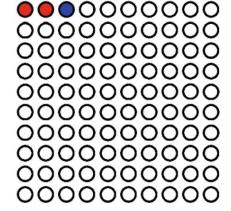
(0.51 - 0.93)

p=0.02

0.69

0.94

3.06


0.69

A Acute Kidney Injury Study SGLT2i Control Event Events Total Events Total Event Risk ratio (95%CI) rate events rate events DAPA HF 2.368 0.97% 46 2.368 1.94% ю EMPEROR-Reduced 46 1,863 2.47% 67 1.867 3.59% SOLOIST-WHF 25 605 4.13% 27 611 4.42% 1 52 1.92% 0 53 0.00% SUGAR-DM-HF TOTAL 140 4.899 2.86%

Favours SGLT2i Favours control

Rate of

acute kidney injury



Total 100%



Excess of acute kidney injury (AKI) on placebo is 0.9% = to avoid 1 AKI, 111 patients should be

treated with SGLT2-i

 Acute kidney injury was defined as doubling of baseline serum creatinine values.

**1.9% on SGLT2i and in 2.8% on placebo** (RR 0.69, 95% Cl 0.51–0.93, p = 0.02)

Ů

InaHF

 The excess of AKI on placebo over SGLT2i was 0.9% and the corresponding NNH was 111 →111 patients should be treated with SGLT2 inhibitors to avoid one AKI event

Vukainovic D, et al. Eur J of Heart Fail (2022) 24, 1625–1632. doi:10.1002/ejhf.2584

#### Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials

The Nuffield Department of Population Health Renal Studies Group* and the SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists' Consortium*

	Kidney disease p	progression					Acute kidney injury							
	Mean baseline eGFR, mL/min per 1-73m²	Events/partic	clpants	Event ra per 100	ate 0 patient-years		RR (95% CI)	Events/parti	cipants	Event per 10	rate 00 patient-yea	ars	RR (95% CI)	
		SGLT2 inhibitor	Placebo	SGLT2 inhibito	Placebo r			SGLT2 inhibitor	Placebo	SGLT2 inhibit	Placebo or			
Diabetes														
DECLARE-TIMI 58	85	56/8582	102/8578	1.6	3.0		0-55 (0-39-0-76)	125/8574	175/8569	3.5	4.9			0-69 (0-55-0-8
CANVAS Program	77	80/5795	81/4347	3-6	5-8		0.61 (0.45-0.83)	30/5790	28/4344	1.6	2.5		-	0.66 (0.39-1.1
VERTIS CV	76	49/5499	32/2747	2.6	3.4		- 0.76 (0.49–1.19)	42/5493	22/2745	2.5	2.7		→	0.95 (0.57-1.5
EMPA-REG OUTCOME	74	51/4645	47/2323	4.0	7.6 —		0.51 (0.35-0.76)	45/4687	37/2333	2.5	6.2 —			0-41 (0-27-0-6
DAPA-HF	63	18/1075	24/1064	12	16		— 0·73 (0·39–1·34)	31/1073	39/1063	19	24		-	0.79 (0.50-1.2
EMPEROR-REDUCED	61	13/927	23/929	13	24	-	0.52 (0.26-1.03)	26/927	33/929	21	27			0.77 (0.46-1.2
EMPEROR-PRESERVED	60	38/1466	44/1472	15	18		— 0·82 (0·53–1·27)	60/1466	84/1472	20	28			0-69 (0-50-0-9
DELIVER	60	33/1578	37/1572	9.5	11		— 0·87 (0·54–1·39)	59/1578	52/1572	17	15		-	1.13 (0.78-1.6
CREDENCE	56	153/2202	230/2199	27	41	- <b>-</b>	0.64 (0.52-0.79)	86/2200	98/2197	17	20		-	0-85 (0-64-1-
SOLOIST-WHF	51	NA/NA	NA/NA					25/605	27/611	55	59		→	0.94 (0.55-1.
SCORED	44	37/5292	52/5292	5.0	7.0		0.71 (0.46-1.08)	116/5291	111/5286	16	16	-	-	1-04 (0-81-1-
DAPA-CKD	44	103/1455	173/1451	35	60		0.57 (0.45-0.73)	48/1455	69/1451	15	22			0.66 (0.46-0.
EMPA-KIDNEY	36	108/1525	175/1515	36	59		0.55 (0.44-0.71)	73/1525	81/1515	24	27		<u> </u>	0-88 (0-64-1-
Subtotal: diabetes	67	739/40041	1020/33489			$\diamond$	0.62 (0.56-0.68)	766/40664	856/34087	7	-	$\diamond$		0.79 (0.72-0.
No diabetes														
DAPA-HF	68	10/1298	15/1307	5.0	8-0 —		0.67 (0.30-1.49)	18/1295	30/1305	9.9	16		-	0.60 (0.34-1.
EMPEROR-REDUCED	63	5/936	10/938	5.2	10 🔶		<u> </u>	20/936	34/938	16	28 –			0-56 (0-32-0-
DELIVER*	63	17/1551	17/1557	5.0	4.9		→ 1·01 (0·51–1·97)	30/1551	47/1558	8.8	14			0.64 (0.41-1.4
EMPEROR-PRESERVED	62	12/1531	18/1519	4.5	6.9 —			37/1531	47/1519	12	15		-	0-80 (0-52-1-2
DAPA-CKD	42	39/697	70/701	29	53 —		0.51 (0.34-0.75)	16/697	21/701	11	15		<u> </u>	0.75 (0.39-1.4
EMPA-KIDNEY	39	119/1779	157/1790	35	47		0.74 (0.59-0.95)	34/1779	54/1790	10	16			0-63 (0-41-0-
Subtotal: no diabetes	56	202/7792	287/7812			$\diamond$	0-69 (0-57-0-82)	155/7789	233/7811			$\stackrel{\cdot}{\diamond}$		0-66 (0-54-0
Total: overall	65	941/47833	1307/41301			$\diamond$	0-63 (0-58-0-69)	921/48453	1089/41898	3		$\diamond$		0.77 (0.70-0.
Trend across trials sorter Diabetes p=0-87; No diabetes p=0-86; Heterogeneity by diabet					0-25 Favours	0.50 0.75 1.00 <b>4</b> 5GLT2 inhibitor	<b></b>	Diabetes p=0 No diabetes p			0.25 0.12 Favou	0-50 0-75 1- Trs SGLT2 inhibitor		→

- 13 trials; 90,409 pts.
- 37% RRR kidney disease progression

ÍnaHF

- 23% RRR AKI
- Similar benefit with and without diabetes.
- Similar benefit regardless of cause of CKD.

#### Figure 1: Effect of sodium glucose co-transporter-2 inhibition on kidney disease outcomes by diabetes status

Kidney disease progression was defined as a sustained decrease in eGFR ( $\geq$ 50%) from randomisation, a sustained low eGFR, end-stage kidney disease, or death from kidney failure in all presented trials. Outcome definition details for each trial are provided in the appendix (pp 9–11). Rate values are not presented for the combined subtotal and total populations due to the heterogeneity in rates across the individual trials. eGFR=estimated glomerular filtration rate. RR=relative risk. SGLT2=sodium glucose co-transporter-2. NA=not available. *One participant without diabetes in DELIVER was missing a baseline creatinine measurement and was excluded.



## Risk Benefit Ratio on SGLT2i in HF

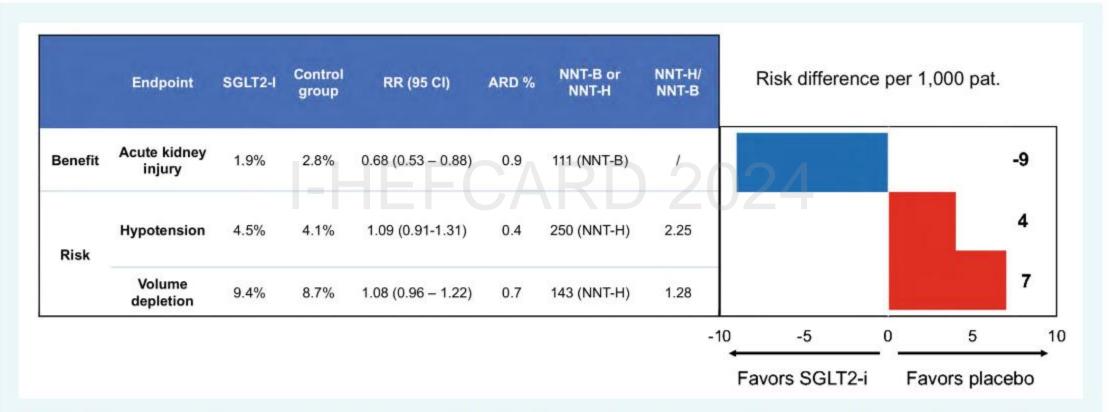



Figure 4 Key benefit-risk summary table with embedded risk difference forest plot per 1000 patients. ARD, absolute risk difference; CI, confidence interval; NNT-B, number needed to treat for benefit; NNT-H, number needed to treat for harm; RR, risk ratio; SGLT2-i, sodium-glucose cotransporter 2 inhibitor.

U



## Take Home Points

- Mortality in HF patients is stil skyrocketing in Indonesia → most of them because of inertia
- 50% inertia → health care providers (lack of awareness of importance of GDMT, forget to increase the dose, afraid of AEs)
- Growing evidence supporting early initiation of GDMT (including SGLT2i) in the hospital setting (as soon as clinical stability is achieved), with a well-planned transtition to chronic care
- Hospitalization for HF favors clinicians with ideal window to initiate and adjust the GDMT (with rapid concurrent administration)
- Once the diagnosis of HF is made a SGLT2 inhibitor should be started, so it can improves morbidity and mortality in patients with heart failure irrespective of ejection fraction, once daily, no need uptitration
- The drug will only work if you prescribe it!







Great Disruption in Cardiovascular Disease Management: Winner Takes All

Hotel Grand Mercure, Solo Baru, Surakarta

Symposium | In-Depth Course | Abstract Submission | Plenary Lecture Arrhythmia Special Session | Memorial Lecture

# Matur Nuwun.. Sampai Jumpa di Solo.... https://scf-sochf.com

Ir. Budi Gunadi Sadikin, CHFC., CLU dr. Radityo Prakoso, SpJP(K), FIHA, FAPSIC, FASCC, FESC, FACC, FSCAI dr. Hawani Sasmaya, Sp.JP (K), FIHA, FHFA Dr. dr. Sally Aman Nasution, Sp.PD-KKV, FINASIM, FACP dr. Siti Elkana Nauli, Sp.JP(K), FIHA, FASCC, FHFA dr. Rarsari Soerarso, Sp.JP(K), MARS, FIHA, FHFA dr. Irnizarifka, Sp.JP (K), FIHA, FAPSC, FASCC, FHFA Prof. Dr. dr. Trisulo Wasyanto, Sp.JP(K), FIHA, FAPSC, FASCC





# Back-up/additional slides 2024

Ü

Hyperkalemia

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

nsen SL Presented at: ESC Congress - The Digital Experience; August 29-September 1, 2020.

ඟ

@ina.hf



#### The 4th Indonesian Apperkalemia Events in the DAPA-HF Trial

Dapagliflozin may attenuate the risk of moderate/severe hyperkalemia in patients treated with an MRA at baseline

	Dapaglif	lozin 10 mg	Pla	acebo		
ndpoint	n/N	Rate per 100 pt-yrs	n/N	Rate per 100 pt-yrs		HR (95% CI)
Mild Hyperkalemia (>5.5 mmol/L)						
All patients	245/2298	8.2	262/2310	8.8		0.93 (0.78, 1.11
No MRA at baseline	63/661	7.1	58/684	6.5	Z4 <u> </u>	1.20 (0.84, 1.72
MRA at baseline	182/1637	8.6	204/1626	9.8		0.86 (0.70, 1.05
Moderate/Severe Hyperkalemia (>6.0 mmol/L)						
All patients	36/2364	1.1	51/2364	1.6	-	0.64 (0.42, 0.99
No MRA at baseline	13/676	1.4	11/697	1.1		1.17 (0.52, 2.62
MRA at baseline	23/1688	1.0	40/1667	1.7		0.50 (0.29, 0.85
FrEF = heart failure with reduced ejection fraction-HR = hazard ration		_			◄ iflozin 10 mg Better Place	1.25 cebo Better

**DAPA-HF Background MRA** 





#### 

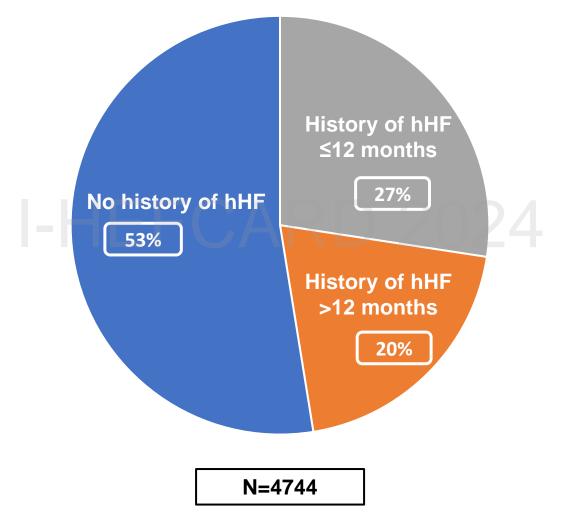
Dapagliflozin may attenuate the risk of moderate/severe hyperkalemia in patients treated with an MRA at baseline

	Dapagliflozir	n 10 mg	Placeb	0			
Endpoint	n/N (%)	Rate per 100 pt-yrs	n/N (%)	Rate per 100 pt-yrs	HR (95% CI)	p-value	Interaction p-value ^a
Mild Hyperkalemia (>5.5 mmol/L)							
No MRA at baseline	63/660 (9.6)	7.2	57/682 (8.4)	6.4	1.20 (0.84-1.72)	0.316	0.12
MRA at baseline	180/1632 (11.0)	8.7	204/1625 (12.6)	10.0	0.86 (0.70-1.05)	0.144	0.13
Moderate/Severe Hyperkalemia (>6.0 mmol/L)							
No MRA at baseline	13/675 (1.9)	1.4	11/695 (1.6)	1.2	1.17 (0.52-2.62)	0.707	0.00
MRA at baseline	21/1683(1.3)	0.9	40/1666(2.4)	1.8	0.50 (0.29-0.85)	0.01	0.08

^aA non-significant result for an interaction test can be interpreted as consistency of effect across the subgroup.²

38

### DAPA-HF Clinical Benefit Analysis: Onset and Timing From Prior hHF


# I-HEFCARD 2024

hHF = hospitalization for heart failure.



The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

## istribution of Patients by History of hHF



40

Ğ

InaHF

ΙΦΊ

d

The **1th Indonesian** Symposium on Heart, ailt re and

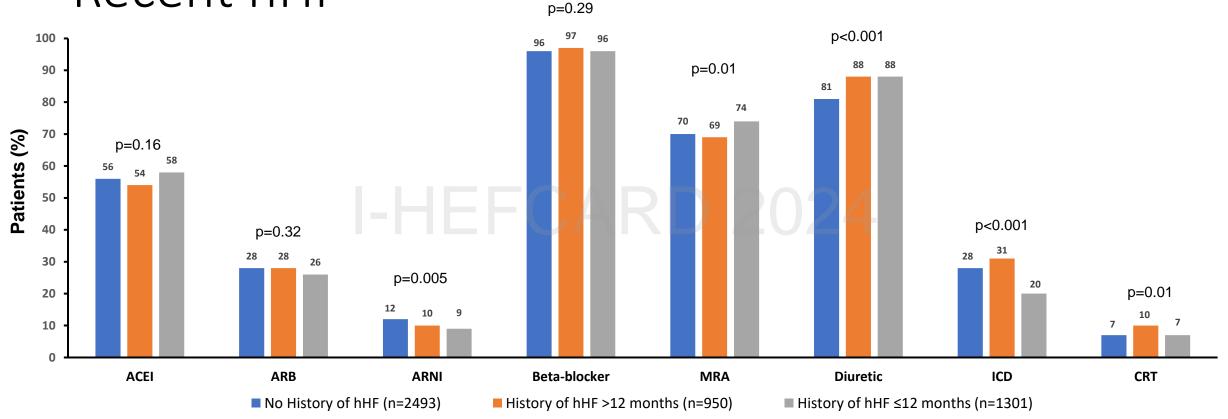
Cardic metal olic Direase

## Che Abbrones Byrapa and the all life in Static methods by Timing of Most Bee Centre

Characteristic	No history (n=2493)	>12 months (n=950)	≤12 months (n=1301)	p-value
Mean age, year	66.7	66.9	65.2	<0.001
Female, %	23.7	22.6	23.3	0.80
eGFR ² , mL/min/1.73m ²	66	64	66	0.002
NT-proBNP, pg/mL	1400	1526	1486	0.09
LVEF, %	31.3	30.6	30.9	0.009
NYHA Class, %				_
II	67.9	74.5	61.6	_
III	31.6	24.8	36.4	<0.001
IV	0.5	0.6	1.9	
Ischemic etiology, %	57.8	55.7	54.0	0.03

^aTiming of hHF relative to trial enrollment.

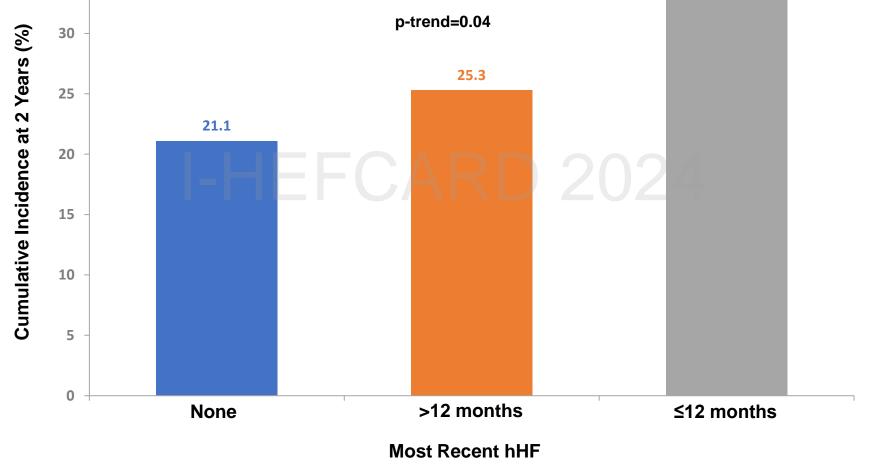
Association.


41

eGFR = estimated glomerular filtration rate; hHF = hospitalization for heart failure; LVEF = left ventricular ejection fraction; NT-proBNP = N-terminal pro-B-type natriuretic peptide; NYHA = New York Heart

Cardiometabolic Disease

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease


Recent hHF^a



^aTiming of hHF relative to trial enrollment.

ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin-receptor blocker; ARNI = angiotensin-receptor neprilysin inhibitor; CRT = cardiac resynchronization therapy; HF = heart failure; hHF = hospitalization for heart failure; ICD = implantable cardioverter-defibrillator: MRA = mineralocorticoid receptor antagonist. 0811-1900-8855 Berg DD et al. JAMA Cardiol. 2021;6:499-507.

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease Death or Worssening HFa by Timing of Most Recent, hHF^b Placebo Group 33.8



^aWorsening HF includes hHF or urgent HF visit ^bTiming of hHF relative to trial enrollment.

### The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease Chinical Benefit Analysis: Onset and Timing From Most Recent hHF

- This assessment from the DAPA-HF trial was a *post hoc* analysis.
- The reduction in the primary endpoint of CV death and worsening HF events^a occurred as early as 28 days.
- The risk of CV death and worsening HF events^a was lower with dapagliflozin versus placebo in patients with HFrEF regardless of timing of most recent hHF.
- Patients with a more recent HF hospitalization tended to experience greater relative risk reductions and correspondingly greater absolute risk reductions in the primary outcome at 2 years with dapagliflozin.

^aWorsening HF includes hHF or urgent HF visit.

**DAPA-HF Onset and Timing from Prior hHF**