

MASTERING ACUTE HF Prime Time for **Diuretic** Combination

Irnizarifka, MD, FIHA, FAPSC, FASCC, FHFA

Division of Arrhythmia, Cardiac Pacing, and Heart Failure Dept. of Cardiology and Vascular Medicine Faculty of Medicine – Universitas Sebelas Maret **UNS Hospital**

@ina.hf | 🔘 +62 811-1900-8855 | 🗹 pokjahf@gmail.com 0

Disclosure

- This is a session by PT OTSUKA Indonesia
- Scientific speaker for :

Servier, Novartis, Dexa Medica, Boehringer Ingelheim (ZPT), Bayer, Astra Zeneca, Otsuka, Menarini, Medtronic, Merck, Abbott

The Facts

From the GBD (Global Burden of Disease) data, the national and territorial age-standardized rate (ASR) of heart failure prevalence ranged from 211.86 to 1,032.84 cases per 100,000 population in Asia. China (1,032.84), Indonesia (900.90), and Malaysia (809.47) are the 3 highest nations in terms of ASR for prevalence of HF in 2019. Conversely, Nepal (211.86), Bhutan (255.54), and Bangladesh (275.00) reported the lowest rates.

The 1-Year Mortality of Asian HF Patients Is Still High, Especially in Southeast and South Asia: CV Death is the Primary Cause of Death for HF

Crude Mortality of HF at 1 Year of Asian Countries in the Report-HF Study

InaHF

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

	Total (N=18102)	Central and South America (n=2525)	Eastern Europe (n=2761)	Eastern Mediterranean region and Africa (n=2172)	North America (n=1565)	Southeast Asia (n=2292)	Western Europe (n=3489)	Western Pacific (n=3298)	p value*
(Continued from previous page)									
Medication at 6-month follow-up									
ACEi or ARB†	9189 (59%)	1272 (61%)	1704 (69%)	1140 (63%)	712 (53%)	876 (44%)	1923 (64%)	1562 (55%)	<0.0001
β blocker†	10437 (67%)	1400 (67%)	1883 (76%)	1222 (68%)	1057 (78%)	925 (47%	2330 (78%)	1620 (57%)	<0.0001
Diuretics†	11176 (67%)	1345 (65%)	1923 (78%)	1376 (63%)	1078 (80%)	1326 (67%)	2516 (84%)	1614 (57%)	<0.0001
MRA†	6608 (43%)	9539 (45%)	1289 (52%)	573 (32%)	469 (35%)	528 (27%)	1411 (47%)	1399 (50%)	<0.0001
Length of stay, days†	8 (5–12)	8 (5–14)	9 (6-13)	6 (4–10)	6 (4–10)	6 (4–8)	9 (6–13)	9 (7–14)	<0.0001
1-year mortality	3461 (20%)	547 (23%)	439 (16%)	472 (22%)	324 (21%)	470 (21%)	668 (20%)	541 (17%)	<0.0001
Hospitalisation									
Hospitalised for any cause	6674 (38%)	799 (33%)	1062 (39%)	773 (36%)	955 (62%)	428 (19%)	1583 (47%)	1074 (34%)	<0.0001
Hospitalised for heart failure	3940 (22%)	482 (20%)	654 (24%)	478 (23%)	626 (41%)	240 (11%)	826 (24%)	634 (20%)	<0.0001
Death or heart failure hospitalisation	6928 (39%)	972 (40%)	1038 (38%)	913 (43%)	830 (54%)	673 (30%)	1395 (41%)	1107 (35%)	<0.0001

Data are n (%), unless otherwise stated. BMI=body-mass index. DCHF=decompensated chronic heart failure. NYHA=New York Heart Association. LVEF=left ventricular ejection fraction. JVP=jugular venous pressure. ACEi=angiotensin-converting enzyme inhibitor. ARB=angiotensin receptor blocker. MRA=mineralocorticoid receptor antagonist. *All comparisons p<0.001. †No data missing.

Table 1: Differences between patients according to region

2023 Interim Analysis

Drug Regiments

According to :

• 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure

• 2021 CCS/CHFS Heart Failure Guidelines Update

• 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

		HFmrEF			HFrEF	
DRUG CLASS	Initial	3 Mo (Opt.)*	12 Mo (Opt.)**	Initial	3 Mo (Opt.)^	12 Mo (Opt.)^^
ACE-Inhibitor	-	E		86.7%	82.6% (98.8%)	76.0% (98.4%)
ARB		Lese		8.9%	11.0% (83.7%)	17.6% (95.5%)
ARNI	A	72		4.4%	6.1% (54.2%)	6.0% (93.3%)
Beta-Rec. Blocker	ST / R			98.5%	99.5% (84.6%)	99.6% (92.8%)
MRA	23.5%	34.5% (26.3%)	39.7% (41.9%)	48.7%	65.0% (51.6%)	70.4% (59.7%)

@_____corehfrsuns@gmail.com

*110 Subjects ; **78 Subjects ; ^391 Subjects ; ^^250 Subjects

Outcome

Cummulative All-Cause Mortality corehfrsuns@gmail.com

Rehospitalization

VERY IMPORTANT

3 major causes directly affect the rehospitalization in HF :

- Congestion
- Comorbidities
- Target Organ Damage

When you check your watch to see if it's time to take your furosemide

Acute HF: Decongestion Plays Essential Part!

How Crucial is Congestion?

causes Multi Organ Dysfunction

O

Gunnar Gislaso

One-Year Mortality After Intensification of Outpatient Diuretic Therapy

Christian Madelaire D, MD; Finn Gustafsson, MD, PhD, DMSc; Lynne Warner Stevenson, MD; Søren Lund Kristensen, MD, PhD; Lars Køber, MD, DMSc; Julie Andersen, MScPH; Maria D'Souza, MD, PhD; Tor Biering-Sørensen, MD, PhD; Charlotte Andersson, MD, PhD; Christian Torp-Pedersen, MD, DMSc; Gunnar Gislason, MD, PhD; Morten Schou, MD, PhD

Time since HF diagnosis	Event N	patients	N _{deaths} (%)	ŀ	lazard ratio (95%-CI)	P-value
	No worsening	53,794	3,944 (7,3)		1	
	HF hospitalization	3.160	420 (13.3)	⊢● − 1	1.88(1.70-2.08)	< 0.001
Year 1	Diuretic intensification	4.517	567 (12,6)		1.49(1.36-1.62)	< 0.001
	Both events	942	176 (18.7)	⊢	2.31(1.99-2.69)	<0.001
	No worsening	41,557	2,897 (7.0)		1	
Voor 7	HF hospitalization	1,122	195 (17.4)	⊢ •−−1	2.39(2.07-2.77)	< 0.001
rear 2	Diuretic intensification	2,575	357 (13.9)	⊢ ● →	1.67(1.50-1.87)	< 0.001
	Both events	426	83 (19.5)	⊢	2.33(1.87-2.90)	<0.001
	No worsening	32,393	2,340 (7.2)		1	
Voor 2	HF hospitalization	719	120 (16.7)		2.06(1.71-2.47)	< 0.001
rear 5	Diuretic intensification	1,800	233 (13.0)		1.48(1.29-1.69)	<0.001
	Both events	285	68 (23.9)	AKI	2.95(2.31-3.75)	<0.001
	No worsening	24,956	1,679 (6.7)		1	
Year 4	HF hospitalization	525	90 (17.1)	⊢	2.23(1.80-2.76)	<0.001
	Diuretic intensification	1,244	171 (13.8)	⊢ I	1.68(1.44-1.97)	<0.001
	Both events	225	55 (24.4)	·	3.24(2.48-4.25)	<0.001
	No worsening	19,185	1,323 (6.9)		1	
Vear 5	HF hospitalization	348	61 (17.5)	⊢	2.19(1.69-2.84)	< 0.001
	Diuretic intensification	931	155 (16.7)	⊢	1.99(1.68-2.36)	<0.001
	Both events	155	30 (19.4)	• • •	2.15(1.49-3.09)	<0.001
				1 N		
			0.8	2.0 4.2		
				Hazard Ratio (95% CI)		

CONCLUSIONS: In a nationwide cohort of patients with HF, outpatient intensification events were associated with almost 2-fold risk of mortality during the next year. Although HF hospitalization was associated with a higher risk, the need to intensify diuretics in the outpatient setting is a signal to review and intensify efforts to improve HF outcomes.

How Fast should we respond?

Figure I Cubic spline analysis of the probability of worsening renal function (WRF) and net fluid loss. The blue area represents the pointwise 95% confidence interval. Negative numbers on the *x*-axis indicate net fluid loss.

How Clean should we made?

Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial[†]

Cumulative incidence of all-cause mortality + hospitalization for heart failure by composite congestion score at discharge/day 7.

Congestion Evaluation

TABLE 2 Selected Set of	Decongestion Targets at Discharge From	n Hospitalization for Worsening Heart Failure
Congestion Parameter	Target at Discharge	Reference
Clinical tools		
EVEREST score	≤2	Ambrosy et al. (2).
NYHA functional class	≤2	Salah et al. The ELAN-HF study. Heart 2014;100:115-25
Biomarkers		
NT-proBNP	>30% drop during hospitalization Discharge value <1,500 pg/ml	McQuade et al. (28). Salah et al. The ELAN-HF study. Heart 2014;100:115-25 and Kociol et al. The DOSE-AHF trial. Circ Heart Fail 2013;6:240-5
BNP	Discharge value <250 pg/ml	McQuade et al. (28)
Hemoglobin	>10 g/l increase during hospitalization	Van der Meer et al. The PROTECT trial. J Am Coll Cardiol 2013;61:1973-81
Imaging tools		
IVC imaging	Maximum diameter <2.1 cm IVC collapsibility index >50%	Goonewardena et al. J Am Coll Cardiol Img 2008;1:595-601
Lung ultrasound	<30 us-B lines	Coiro et al. (3) and Gargani. Cardiovasc Ultrasound 2015;13:40
IVC = inferior vena cava; NYHA	= New York Heart Association; us = ultrasound.	

O

Decongestion **<u>Strategy</u>**

IV nitroglycerin or nitroprusside may be added as an adjunct to diuretics for dyspnea in the absence of hypotension (Class 2b)

Abbreviations: BUN indicates blood urea nitrogen; GDMT, guideline-directed medical therapy IV, intravenous; and MRA; mineralocorticoid.

Heidenreich, P. A. et al. (2022). 2022 AHA/ACC/HFSA Guideline for Heart Failure. Circulation.

Diuretic in Acute HF

	Furosemide	Bumetanide	Torsemide
Relative IV potency, mg	40	1	20
PO to IV conversion, approximate	2:1	1:1	1:1
Bioavailability, %	10–100 (average = 50)	80-100	80-100
Initial outpatient PO dose, mg	20-40	0.5-1	5-10
Maintenance outpatient PO dose, mg	40-240	1–5	10-20
Maximum daily IV dose, mg*	600	10	200
Onset, min			
Oral	30-60	30-60	30-60
IV	5	2-3	10
Peak serum concentration after PO administration, h	1	0.5-2	0.5-2
Affected by food	Yes	Yes	No
Metabolism	50% renal conjugation	50% hepatic	80% hepatic
Half-life, h			
Normal	1.5-2	1	3-4
Renal dysfunction	2.8	1.6	4-5
Hepatic dysfunction	2.5	2.3	8
HF	2.7	1.3	6
Average duration of effect, h	6-8	4-6	6-8

A] The maximal daily dose for i.v. loop diuretics is generally considered furosemide 400-600 mg, though up to 1000 mg may be considered in patients with severely impaired kidney function.

B] Combination therapy is the addition to the loop diuretic of a diuretic with a different site of action, e.g. thiazides or metolazone or acetazolamide.

Available at https://inahfcarmet.org

InaHF

O

ii

Epste

Sigur

Furre

Ghos

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

Is Furosemide enough?

Table 2 Summary of Revie	wed Studies in I	Heart Failure Pat	ients			
First Author (Ref. #), Year	Patients	Design	TD Dose	LD Dose	Benefits	Adverse Events
Robson et al. (18), 1964	1 CHF	Observational	HCTZ 100 mg IV	FSM 50-100 mg IV + 1-5 mg/min	None	Not reported
Dettli and Spring (17), 1966	18 mixed edematous	Observational	HCTZ 200 mg	FSM 30-240 mg/day	Improved diuresis, similar to $4\times$ higher FSM dose	Hypochloremic alkalosis + hypokalemia
Olesen et al. (19), 1970	24 CHF	Randomized active-control	QEZ 50-100 mg/day	FSM 40-80 mg/day	Superior diuresis to doubled FSM dose in mild CHF only	Hypokalemia (-0.5 mEq/l) bigeminy
Olesen et al. (20), 1971a	12 CHF	Randomized active-control	QEZ 50 mg/day	FSM 40 mg/day	Doubled UNa, mean weight loss 0.5 kg/day	Not reported
Olesen et al. (21), 1971b	24 CHF	Randomized active-control	QEZ 50 mg/day BDFZ 5 mg/day	FSM 80 mg BID	Doubled UNa, weight loss ${\sim}0.7{-}0.8$ kg/day	Hypokalemia (-0.3 mEq/l)
Beck and Asscher (22), 1971	1 CHF	Observational	MTZ 5 mg/day	FSM 80 mg/day	Clearance of edema	Hypokalemia
Gunstone et al. (23), 1971	13 CHF	Observational	MTZ 2.5-10 mg/day	FSM 120-400 mg/day	\geq 2 kg weight loss over 4 days in $>$ 2/3 overall	Azotemia in most patients, hypokalemia
Asscher (24), 1974	4 CHF	Observational	MTZ 5 mg/day	FSM ≥500 mg/day	Mean weight loss 8.1 kg	Hypokalemia
Sigurd et al. (25), 1975	18 CHF	Randomized active-control	BDFZ 5 mg/day	BMT 2 mg BID	Doubled UNa, mean weight loss 0.8 kg/day	Hypokalemia (-0.45 mEq/l)

O

InaHF

Old publications Small sample number

Electrolyte imbalance, WRF, and arrhythmia were reported

			15 mg/week			
Aravot et al. (35), 1989	12 CHF	Observational	MTZ 2.5-5 mg 2×/week	FSM 160 mg/day	Eliminated need for IV diuresis	Not reported
Friendland and Ledingham (36), 1989	1 ADHF	Observational	MTZ 5-10 mg/day	FSM 240 mg/day IV	16 kg weight loss	Not reported
Kiyingi et al. (37), 1990	10 CHF	Observational	BDFZ 10 mg/day	FSM 200-400 mg/day IV	Mean weight loss 7.7 kg	Hypokalemia (<2.9 mEq/l) in 20%
Channer et al. (38), 1990	17 ADHF	Observational	MTZ 1.25-10 mg/day	FSM 250-500 mg/day PO	Responders (71%) had mean 8.3 kg weight loss + d/c home	Hypokalemia, creatinine ↑ 25%
Kröger et al. (39), 1991	10 ADHF	Observational	MTZ 2.5–5 mg/day	FSM 80-500 mg/day	Mean 8.9 kg weight loss	Hyponatremia, hypokalemia
Dormans and Gerlag (40), 1993	8 CHF	Observational	HCTZ 25-100 mg/day	FSM 500- 4000 mg/day	Doubled UNa, mean 1.3 kg/day weight loss	Creatinine ↑ 50%, ClCr ↓ 33%, hypokalemia
Channer et al. (41), 1994	40 ADHF	Randomized active-control	MTZ 10 mg/day BDFZ 10 mg/day	FSM 80 mg IV BID	5–5.6 kg mean weight loss, hospital d/c in 90%	Hypokalemia (<3.5 mEq/l) in 65%
Mouallem et al. (42), 1995	32 ADHF	Observational	CTZ 500 mg/day	FSM 160-320 mg/day	Mean 4.8 kg weight loss, clearance of edema	Hypokalemia (-0.4 mEq/l)
Dormans and Gerlag (43), 1996	20 ADHF	Observational	HCTZ 25-100 mg/day	FSM 250-4000 mg/day	Doubled UNa, mean weight loss 6.7 kg, d/c home in 70%	Hypokalemia (-0.8 mEq/l), persistent dehydration
Vanky et al. (44), 1997	20 post-CABG	Observational	HCTZ 50 mg/day + amiloride 5 mg/day	FSM 80 mg/day	Mean 2.3 kg weight loss after one dose	None
Rosenberg et al. (45), 2005	21 CHF	Observational	MTZ 2.5-5 mg/day	FSM mean 260 mg/day	Mean 2 kg weight loss + 10/8 mm Hg BP reduction	BUN ↑ 58%, hypokalemia (-0.8 mEq/l), creatinine ↑ 27%

Jentzer JC, et al.J Am Coll Cardiol.2010

Dose-response relation to furosemide

Ů

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

24 jam pertama Kongesti dengan Intervensi Paralel volume overload (1) Lanjutkan GDMT (2) pertimbangkan untuk menggunakan MRA dini pada kondisi kalium yang rendah, (3) restriksi cairan dan garam, (4) kalium dan magnesium IV dapat diberikan jika diperlukan Terapi Fase Akut Pakai diuretik loop sebelumnya? Dalam waktu 1 jam setelah admisi Ya Tidak dapat Dosis inisial: 1-2x total Dosis inisial ≥ 20 – 40 dosis oral, berikan IV mg furosemide IV Kosongkan kandung kemih Kosongkan kandung kemih Fase Evaluasi Dini Mulai tampung urin 6 jam pertama setelah diuretik loop Evaluasi awal terapi Setelah 2 jam: analisa natrium urin (jika mungkin) Setelah 6 jam: hitung rerata urine output (UO) Natrium urin > 50 - 70 meq/L (jika mungkin) Urin tampung 6 jam > 100 - 150 mL/jam Fase Respons Dini Ya Tidak Kongesti menetap? Tidak* Sisa waktu 24 jam pertama Gandakan dosis Ya diuretik loop IV Ulang s/d dosis diuretik maksimal Ulang dosis diuretik Nilai dalam 6 jam loop IV yang sama Natrium urin < 50 - 70 meq/L (jika mungkin) Ya tiap 12 jam** Diuresis < 100 mL/jam Tidak Lanjutkan ke Bagian 2: Algoritma terapi setelah 24 jam

O

Kombinasi tolvaptan dengan diuretik dapat digunakan untuk tatalaksana gagal jantung kongesti yang belum optimal dengan diuretik saja

What does the **latest guideline** state?

InaHF

Ů

AQUAMARINE Study

Conventional vs Conventional + Tolvaptan 15 mg/day

1° outcome: 48-hour urine volume

2° outcome: WRF, BW change, dose of furosemide used, relief of symptom (Likert scale), BNP change, Na and K change

Outcome	Conventional Group $(n = 109)$	Tolvaptan Group $(n = 108)$	P Value
Primary outcome	ZUZ4		
48-hour urine volume (mL)	4997.2 ± 2101.4	6464.4 ± 3173.0	<.001
Secondary outcomes			
Worsening of renal function (%)	30 (27.8)	26 (24.1)	.642
Dose of diuretics use within 48 h (mg)	120 (80-180)	80 (40-150)	<.001
Net fluid loss within 48 h (mL)	3697.9 ± 2112.0	4700.1 ± 2443.3	.004
Change in BNP from baseline to 48 h (pg/mL)	-306.1 (-153.7 to -662.1)	-285.3 (-110.7 to -650.9)	.602
Change in body weight from baseline to 48 h (kg)	-1.99 ± 2.17	-3.16 ± 2.66	<.001
Length of hospital stay (d)	14.6 (10.3–27.2)	14.2 (8.9–20.3)	.36
Adverse events	6 (5.5)	10 (9.3)	.313
In-hospital death	5 (4.6)	4 (3.7)	>.99
*			

Results are presented as mean ± SD, n (%), or median (interquartile range). BNP, B-type natriuretic peptide.

Table 2. Summary of Primary and Secondary End Points

AQUAMARINE Study

Conventional vs Conventional + Tolvaptan 15 mg/day

1° outcome: 48-hour urine volume

2° outcome: WRF, BW change, dose of furosemide used, relief of symptom (Likert scale), BNP change, Na and K change

Tolvaptan therapy significantly higher 48-hour urine output compared to conventional therapy despite significantly lower amounts of loop diuretic use (80 mg vs 120 mg; *P* < .001)

Fig. 3. Changes in dyspnea and edematous symptoms within 48 hours. (A) Patients-reported changes in dyspnea from baseline, as measured on a 7-point Likert scale. (B) Changes in congestive symptoms from baseline to 48 hours. Conv, conventional; Tol, tolvaptan.

ORIGINAL ARTICLE

Tolvaptan add-on therapy in patients with acute heart failure: A systematic review and meta-analysis

Xiandu Luo¹ | Qi Jin² | Yanqing Wu¹

	Tolvap	tan	Contr	ol		Risk ratio		Risk	ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI		M-H, fixe	ed. 95% CI	
Felker 2017	65	129	60	128	5.6%	1.07 [0.84, 1.38]		_		
Gheorghiade 2004	144	239	40	80	5.6%	1.21 [0.95, 1.54]				
Gheorghiade 2007	933	1808	853	1811	79.5%	1.10 [1.03, 1.17]				
Inomata 2017	12	40	11	41	1.0%	1.12 [0.56, 2.24]		-		
Konstam 2017	64	122	63	128	5.7%	1.07 [0.84, 1.36]			-	
Matsue 2016	49	108	28	109	2.6%	1.77 [1.21, 2.58]				
Total (95% CI)		2446		2297	100.0%	1.12 [1.05, 1.18]			•	
Total events	1267		1055							
Heterogeneity: $\chi^2 = 6$.	50, df = 5	(P = .26)	5); / ² = 23	%			+	0.5		
Test for overall effect:	Z = 3.66 (P = .000	03)				0.2	5.5 Favours [control]	Favours [Tolva	ptan]

InaHF

FIGURE 3 Forest plot depicting the effects of tolvaptan on dyspnea: tolvaptan was more effective in relieving dyspnea

	Tolvap	tan	Contr	ol		Risk ratio		Risk	ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	8	M-H, fixe	ed, 95% Cl	
Felker 2017	16	129	20	128	2.2%	0.79 [0.43, 1.46]			<u> </u>	
Gheorghiade 2004	129	239	45	80	7.2%	0.96 [0.77, 1.20]			<u>—</u>	
Gheorghiade 2007	913	1585	832	1582	89.5%	1.10 [1.03, 1.17]				
Inomata 2017	6	40	5	41	0.5%	1.23 [0.41, 3.71]				
Matsue 2016	10	108	5	109	0.5%	2.02 [0.71, 5.71]				
Total (95% CI)		2101		1940	100.0%	1.08 [1.02, 1.15]			•	
Total events	1074		907							
Heterogeneity: $\chi^2 = 3.6$	65, df = 4	(P = .46)	$(5); /^2 = 0\%$	6						<u> </u>
Test for overall effect:	Z = 2.62 (/	P = .00	9)				0.2	U.5 Favours [control]	Favours (Tol)	5 /aptan]

FIGURE 4 Forest plot depicting the effects of tolvaptan on edema: tolvaptan significantly reduced edema

Received: 7 May 2020 Revised: 18 May 2020 Accepted: 18 May 2020

DOI: 10.1002/prp2.614

	Tol	vaptan		Co	ontrol			Mean difference	Mean	difference
Study or subgroup	Mean [L]	SD [L]	Total	Mean [L]	SD [L]	Total	Weight	IV, fixed, 95% CI [L]	IV, fixe	d, 95% CI [L]
1.5.1 Urine volume or	1st day									
Gheorghiade 2004	4.0562	2.3102	78	2.2965	1.1341	80	3.2%	1.76 [1.19, 2.33]		
Matsue 2016	6.4644	3.173	108	4.9972	2.1014	109	2.1%	1.47 [0.75, 2.18]		
Udelson 2011	3.4525	2.2067	20	0.748	0.8163	22	1.0%	2.70 [1.68, 3.73]		
Subtotal (95% CI)			206			211	6.3%	1.81 [1.41, 2.22]		-
Heterogeneity: $\chi^2 = 3.8$	83, df = 2 (<i>F</i>	= .15); /	² = 48%	6						
Test for overall effect:	Z = 8.70 (P	<.00001)							
1.5.2 Change in urine	volume fro	om basel	ine							
Inomata 2017	0.459	0.514	40	0.079	0.341	41	29.1%	0.38 [0.19, 0.57]		11
LI Ling 2011	0.533	0.209	35	0.119	0.3	30	64.6%	0.41 [0.29, 0.54]		
Subtotal (95% CI)			75			71	93.7%	0.40 [0.30, 0.51]		•
Heterogeneity: $\chi^2 = 0.0$	08, df = 1 (<i>I</i>	= .77); /	² = 0%							
Test for overall effect: 2	z = 7.45 (P	<.00001)							
Total (95% CI)			281			282	100.0%	0.49 [0.39, 0.60]		•
Heterogeneity: $\chi^2 = 46$	6.77, df = 4	(P < .000	01); /² =	= 91%						
Test for overall effect: 2	Z = 9.40 (P	< .00001)						-4 -2 Favours [Control	U Z 4
Test for subgroup differ	rences: χ^2 =	42.86, 0	f = 1 (F	<pre><.00001)</pre>	, / ² = 97.7	7%			ravours [Control	

InaHF

FIGURE 6 Forest plot depicting the effects of tolvaptan on urine volume: tolvaptan was better than traditional diuretics alone at increasing urine output

Revised: 18 May 2020 Accepted: 18 May 2020

DOI: 10.1002/prp2.614

Tolvaptan			Co	ontrol			Mean difference	Mean difference		
Study or subgroup	Mean [mEg/L]	SD [mEq/L]	Total	Mean [mEq/L]	SD [mEq/L]	Total	Weight	IV. fixed. 95% CI [mEq/L]	IV, fixed, 9	5% CI [mEq/L]
Felker 2017	3.18	3.3	129	0.23	2.5	128	9.9%	2.95 [2.23, 3.67]		
Gheorghiade 2004	2.77	3.56	78	-0.2	3.12	80	4.6%	2.97 [1.93, 4.01]		
Gheorghiade 2007	3.28	4.11	1743	-0.41	3.53	1772	78.6%	3.69 [3.44, 3.94]		
Konstam 2017	5.49	5.77	162	1.85	5.1	161	3.6%	3.64 [2.45, 4.83]		
LI Ling 2011	5.9	3.5	35	2.5	3.4	30	1.8%	3.40 [1.72, 5.08]		
Udelson 2011	2.67	2.72	15	-0.53	2.4	17	1.6%	3.20 [1.41, 4.99]		
Total (95% CI)			2162			2188	100.0%	3.57 [3.34, 3.79]		•
Heterogeneity: $\chi^2 = 5$.	23, df = 5 (P = .3	9); <i>I</i> ² = 4%								
Test for overall effect:	Z = 31.14 (P < .0)	0001)							-4 -2 Favours (control)	Favours (Tolvaptan)

InaHF

FIGURE 7 Forest plot depicting the effects of tolvaptan on serum sodium concentration: tolvaptan could increase serum sodium concentrations

	Tolvap	tan	Contr	ol		Risk ratio		Risk	ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% Cl		M-H, fix	ed, 95% Cl	
Gheorghiade 2004	0	78	0	80		Not estimable				
Gheorghiade 2007	50	2063	60	2055	69.3%	0.83 [0.57, 1.20]		-	-	
Jujo 2016	1	30	3	30	3.5%	0.33 [0.04, 3.03]	8			
Konstam 2017	14	122	16	128	18.0%	0.92 [0.47, 1.80]			-	
LI Ling 2011	1	35	1	30	1.2%	0.86 [0.06, 13.12]		-		
Matsue 2016	4	108	5	109	5.7%	0.81 [0.22, 2.93]				
Shanmugam 2016	2	25	2	26	2.3%	1.04 [0.16, 6.83]		-		
Total (95% CI)		2461		2458	100.0%	0.83 [0.61, 1.13]				
Total events	72		87							
Heterogeneity: $\chi^2 = 0.8$	80, df = 5 (P = .98); /2 = 0%	e.			+	01		
Test for overall effect:	Z = 1.18 (P = .24)				0.02	Favours [Tolvaptan]	Favours [Control]	50

FIGURE 8 Forest plot depicting the effects of tolvaptan on mortality: tolvaptan did not increase mortality during hospitalization more than traditional diuretics alone

Revised: 18 May 2020 Accepted: 18 May 2020

Received: 7 May 2020 DOI: 10.1002/prp2.614

	roivap	lan	Contr	U		RISK TALLO	rsisk ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% C	M-H, fixed, 95% Cl
2.4.1 7.5-15mg							
Inomata 2017	8	40	18	41	9.4%	0.46 [0.22, 0.93]	
Jujo 2016	2	30	10	30	5.3%	0.20 [0.05, 0.84]	
Kimura 2015	3	26	9	26	4.7%	0.33 [0.10, 1.09]	
Matsue 2016	26	108	30	109	15.7%	0.87 [0.56, 1.38]	
Shanmugam 2016	2	25	1	26	0.5%	2.08 [0.20, 21.52]	
Tamaki 2017	3	26	10	24	5.5%	0.28 [0.09, 0.89]	
Subtotal (95% CI)		255		256	41.1%	0.57 [0.41, 0.78]	•
Total events	44		78				
Heterogeneity: $\chi^2 = 9.3$	84, df = 5	(P = .10)); /² = 46	%			
Test for overall effect: 2	Z = 3.44 (P = .00	06)				
2.4.2 30 mg							
Felker 2017	51	129	35	128	18.5%	1.45 [1.01, 2.06]	-
Gheorghiade 2004	3	78	0	80	0.3%	7.18 [0.38, 136.71]	
Gheorghiade 2007	50	2063	45	2055	23.7%	1.11 [0.74, 1.65]	-
Konstam 2017	38	122	32	128	16.4%	1.25 [0.84, 1.86]	+
Subtotal (95% CI)		2392		2391	58.9%	1.28 [1.02, 1.60]	•
Total events	142		112				
Heterogeneity: $\chi^2 = 2.3$	30, df = 3	(P = .5)); /² = 0%	, D			
Test for overall effect:	Z = 2.17 (P = .03)				
Total (95% CI)		2647		2647	100.0%	0.99 [0.82, 1.18]	•
Total events	186		190				
Heterogeneity: $\chi^2 = 25$.62, df = 9	$\Theta(P=.0)$	002); /²=	65%			
Test for overall effect:	Z = 0.15 (P = .88)				Eavoure [Control]
Test for subaroup diffe	rences: x	² = 16.5	2. df = 1	(P < .00)	$(001). I^2 = 9$	93.9%	Favours [Tolvaplarij Favours [Control]

InaHF

FIGURE 9 Forest plot depicting the effects of tolvaptan on worsening renal function (WRF): The incidence of WRF was associated with the dose of tolvaptan; a low dose of tolvaptan could significantly reduce the incidence of WRF, while a high dose did the opposite

Observational Study > Heart Vessels. 2018 Apr;33(4):367-373. doi: 10.1007/s00380-017-1067-3. Epub 2017 Nov 11.

The relationship between the time until commencement of tolvaptan and the length of hospital stay in heart failure patients

140

120

80

60

40

0

0

Ar 100

The length of hospital

Shunsuke Kiuchi 1 , Shinji Hisatake 2 , Takayuki Kabuki 2 , Takashi Oka 2 , Shintaro Dobashi 2 , Takahiro Fujii 2 , Takanori Ikeda 2

InaHF

Regression curve of the relationship between time and commencement of TVT from hospitalization and the length of hospital stay. Time until commencement of TVT from hospitalization were strongly correlated with the length of hospital stay : P < 0.001, $r^2 = 0.0390$.

RESEARCH

The 4th Indonesia Symposium on Heart Failure and Cardiometabolic Disease

Kiuchi *et al. BMC Cardiovascular Disorders* (2022) 22:202 https://doi.org/10.1186/s12872-022-02640-7

Open Access

Shunsuke Kiuchi^{*}, Shinji Hisatake, Takayuki Kabuki, Takashi Oka, Shintaro Dobashi, Yoshiki Murakami, Takahide Sano and Takanori Ikeda

Conclusions:

The early initiation of TLV after hospitalization was associated with a shorter length of hospital stay in patients with HF **regardless of age**.

naHI

Fig. 1 A regression curve of the relationship between the length of hospital stay and time until commencement of TLV from hospitalization in patients with heart failure 80 years of age and older. Time until commencement of TLV from hospitalization was strongly associated with the length of hospital stay (P < 0.001, $r^2 = 0.395$)

C2

Α

Α

В

A

C1

в

В

Α

В

В

Α

С

В

llb

lla

lla

lla

Circulation Journal Circ J 2019; **83:** 2084–2184 doi:10.1253/circj.CJ-19-0342 **JCS GUIDELINES**

InaHF

Tolvaptan?

- what the Guideline recommend..

ACE inhibitors

ARBs

β-blockers

MRAs

loop diuretics

systolic dysfunction

a rapid ventricular response

Loop diuretics, thiazide diuretics

unless contraindicated

Table 23. Recommendations and Levels

Use in all patients (including asymptomatic

Use in patients intolerable ACE inhibitors

Use in symptomatic patients to improve prognosis

Use in asymptomatic patients with left ventricular

Use for rate control in patients with atrial fibrillation with

Use in patients with NYHA Class II-IV, LVEF <35%

who are receiving loop diuretics and ACE inhibitors

Start treatment during hospitalization to relieve symptoms of fluid retention due to heart failure in patients who do

not respond well to other types of diuretics including

Use in patients with symptoms of congestion

Vasopressin V₂ receptor antagonists

Concomitant use with ACE inhibitors

of Evidence for Medications for HFrEF Class of Recommendation Level of Evidence Grade of Recommendation Grade of Recommendation (MINDS) Datients) Level of Evidence	nend	•••			of Ac
Class of Recommendation Level of Evidence (MINDS)	of Evidence	for Medication	s for HFrEF		
patients)		Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)
	patients)	1	Α	А	1

11

1

Ш

11

111

11

JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment

Diuretics	
Furosemide	40 to 80 mg/day once daily
Azosemide	60 mg/day once daily
Torasemide	4 to 8 mg/day once daily
Tolvaptan	7.5 to 15 mg/day once daily
Trichlormethiazide	2 to 8 mg/day once daily

Circulation Journal Circ J 2019; **83:** 2084–2184 doi:10.1253/circj.CJ-19-0342 **JCS GUIDELINES**

InaHF

Tolvaptan?

– what the **Guideline** recommend...

JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure

Table 26. Recommendations and Levels of Evidence for Medications for HFpEF					
	Class of Recommendation	Level of Evidence	Grade of Recommendation (MINDS)	Level of Evidence (MINDS)	
Diuretics					
Use of diuretics to relieve symptoms of congestion		С	C1	VI	
Preference of long-acting drugs when using loop	IIb	c	C1		
Out-patient use of tolvaptan introduced during hospital- ization for acute heart failure to control congestion*	lla	С	C1	IVb	
ACE inhibitors/ARBs					
Increasing the dose of ACE inhibitors/ARBs to maximum tolerable level to reduce the risk of clinical events	llb	С	C1	Ш	
β-blockers					
Increasing the dose of β -blockers to maximum tolerable level to reduce the risk of clinical events	llb	С	C1	Ш	
MRAs					
Increasing the dose of MRAs to maximum tolerable level to reduce the risk of clinical events	llb	С	C1	ш	
Nitrates					
Use of nitrates to improve prognosis and increase activities of daily living	Ш	В	D	Ш	

Diuretics	
Furosemide	40 to 80 mg/day once daily
Azosemide	60 mg/day once daily
Torasemide	4 to 8 mg/day once daily
Tolvaptan	7.5 to 15 mg/day once daily
Trichlormethiazide	2 to 8 mg/day once daily

*Tolvaptan must be introduced during hospitalization. There are no data on the efficacy and safety of long-term treatment with tolvaptan. ARB, angiotensin II receptor blocker; ACE, angiotensin converting enzyme; MRA, mineralocorticoid receptor antagonist.

CLINICAL PRACTICE GUIDELINE: FULL TEXT

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

Recommendations for Diuretics and Decongestion Strategies in Patients With H	łF
Referenced studies that support the recommendations are summarized in the	Online Data Supplemer

COR	LOE	RECOMMEND	DATIONS							
1	B-NR	1. In patien sympton	1. In patients with HF who have fluid retention, diuretics are recommended to relieve congestion, improve symptoms, and prevent worsening HF (1-5).							
1	B-NR	2. For patie with a lo diuretics	ents with HF a oop diuretic sho to minimize e	nd congestive symptoms, addition of a thiazide (e.g., metolazone) to treatment ould be reserved for patients who do not respond to moderate- or high-dose loop electrolyte abnormalities (6).						
		Recommenda Referenced s	ations for Diu studies that s	retics in Hospitalized Patients: Decongestion Strategy upport the recommendations are summarized in the Online Data Supplements .						
		COR	LOE	RECOMMENDATIONS						
		1	B-NR	1. Patients with HF admitted with evidence of significant fluid overload should be promptly treated with intravenous loop diuretics to improve symptoms and reduce morbidity (1).						
		1	B-NR	2. For patients hospitalized with HF, therapy with diuretics and other guideline-directed medications should be titrated with a goal to resolve clinical evidence of congestion to reduce symptoms and rehospitaliza- tions (1-6).						
		1	B-NR	3. For patients requiring diuretic treatment during hospitalization for HF, the discharge regimen should include a plan for adjustment of diuretics to decrease rehospitalizations (7).						
		2a	B-NR	4. In patients hospitalized with HF when diuresis is inadequate to relieve symptoms and signs of congestion, it is reasonable to intensify the diuretic regimen using either: a. higher doses of intravenous loop diuretics						

(1,3); or b. addition of a second diuretic (3).

IS.

Optimal Timing

- ✓ Within 3 days : better response to tolvaptan (urine volume), earlier initiation of ambulatory cardiac rehabilitation, shorter hospital stay, and lower rate of in-hospital death
- ✓ May be considered in the second 60-min when the furosemide iv is refractory in the first 60-min in AHF (class IIa and evidence level A)

Optimal Dose

- ✓ Favourable outcome in preserving renal function at 7.5–15mg/day
- ✓ Advantage in renal function disappeared at dose 30 mg/day
- ✓ Dose 7.5 mg to 15 mg is recommended

Concomitant Diuretic Usage

 Reduce the dose of concomitant diuretics may be recommended for the better clinical outcome sufficient after decongestion is ideal before discharge

TAKE HOME POINTS

- Lack of trials on Diuretic; no direct effect on mortality
 - Door-to-diuretic time predicts in-hospital mortality
 - Net fluid loss in the first 24h predicts WRF
- Several challenges did occurred with conventional loop diuretic
- ✓ Ineffective decongestion :

 \bigcirc

Combination therapy (Class IIa)

Yes, I HAVE A TRUF CARD for Decongestion!
<u>Tolvaptan</u> combination in acute <a>Tolvaptan favored in meta-analysis

- optimal timing (earlier-better)
- optimal dose (7.5-15 mg/day, avoid 30 mg/day)
- concomitant diuretic (wean out)
- PERKI 2023 : Kombinasi Furosemide dan Tolvaptan bila UO tidak sesuai target

@ina.hf | 🕥 +62 811-1900-8855 | 🗹 pokjahf@gmail.com

Great Disruption in Cardiovascular Disease Management: Winner Takes All

Hotel Grand Mercure, Solo Baru, Surakarta July 26th-28th 2024

SymposiumIn-Depth CourseAbstract SubmissionPlenary LectureArrhythmia Special SessionMemorial Lecture

Ir. Budi Gunadi Sadikin, CHFC., CLU dr. Radityo Prakoso, SpJP(K), FIHA, FAPSIC, FASCC, FESC, FACC, FSCAI dr. Hawani Sasmaya, Sp.JP (K), FIHA, FHFA Dr. dr. Sally Aman Nasution, Sp.PD-KKV, FINASIM, FACP dr. Siti Elkana Nauli, Sp.JP(K), FIHA, FASCC, FHFA dr. Rarsari Soerarso, Sp.JP(K), MARS, FIHA, FHFA dr. Irnizarifka, Sp.JP (K), FIHA, FAPSC, FASCC, FHFA Prof. Dr. dr. Trisulo Wasyanto, Sp.JP(K), FIHA, FAPSC, FASCC

and many more

Arrhythmia Special Session: Live Demo

@ @ina.hf | 🕥 +62 811-1900-8855 | 🗹 pokjahf@gmail.com