

The 5th Indonesian Symposium on Heart Failure and Cardiometabolic Disease

Hyperuricemia: The Silent Catalyst in Decongestion Management

June, 12-14 2025

Sheraton Grand Jakarta Gandaria City, Jakarta, Indonesia OB11-1900-8855 Scientific_ihefcard@inahfcarmet.org O@ina.hf | ihefcard.com

Disclosure

-

Darya-Varia Laboratoria

IHEFCARD 2025

OUTLINE

- Epidemiology and biological plausibility of Hyperuricemia (HUA) in CVD and HFCARD 2025
- Hyperuricemia Role in CV Risk/Disease and HF
- Management of Hyperuricemia in HF

Epidemiology HUA in CVD Patients

The prevalence of hyperuricemia in hypertensive patients is ranging from 20% to 40%.¹

Hyperuricemia is found in 25% of individuals with untreated hypertension. The prevalence of hyperuricemia is higher in patients with more severe hypertension.¹

A meta-analysis of 25 observational studies with 97,824 participants showed the risk of incident hypertension increased by 13% for every 1 mg/dl increase in the uric acid level.² In patients with HF, the prevalence of hyperuricemia: 30 to 60%.³

In patients with AF, the prevalence of hyperuricemia: 2.1%.³

- Giovanni Cimmino, Francesco Natale, Rosa Franzese, Mariarosaria Morello, Gisella Titolo, Noemi Mollo, Valentina Maria Caso, Paolo Golino, Plinio Cirillo, Uric acid in atherosclerosis and cardiovascular diseases: innocent bystander or ruthless killer?, Exploration of Musculoskeletal Diseases, 2, 3, (189-207), (2024).
- Yuichi Saito, Atsushi Tanaka, Koichi Node, Yoshio Kobayashi, Uric acid and cardiovascular disease: A clinical review, Journal of Cardiology, Volume 78, Issue 1, 2021.
- Hisatome I, Li P, Taufiq F, Maharani N, Kuwabara M, Ninomiya H, Bahrudin U. Hyperuricemia as a Risk Factor for Cardiovascular Diseases. Journal of Biomedicine and Translational Research [Online]. 2020 Dec;6(3):101-109. <u>https://doi.org/10.14710/jbtr.v6i3.9383</u>

Traditional cardiovascular risk factors **URRAH Study** (EUROPEAN HEART SCORE) smoking
high cholesterol · physical inactivity Hypertension SERUM URIC ACID (SUA) Additional risk predicted by SUA: At risk based on Low Risk Females > 5,1 mg/dl **Traditional CV risk factors** Males > 5,6 mg/dl

Risk of mortality for Cardiovascular Disease

The optimal cut point for SUA to discriminate CVM status according to survival receiver operating characteristic curve analysis was **5.6 mg/dL** (95% CI, 4.99–6.21) in the entire population (Table 2). In women, the cut point providing the better discrimination for CVM was **5.1 mg/dL** (95% CI, 4.34–5.70), whereas in men, it was **5.6 mg/dL** (95% CI, 5.30–5.78)

Virdis A, Masi S, Casiglia E, Tikhonoff V, et al; from the Working Group on Uric Acid and Cardiovascular Risk of the Italian Society of Hypertension. Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension. 2020 Feb;75(2):302-308. doi: 10.1161/HYPERTENSIONAHA.119.13643. Epub 2019 Dec 9. PMID: 31813345.

Spercension

A Constant of Constant of Constant

(8102.9101 it 13.77)

and the taken

HEAR F SHUTE

And An Antiperior

FURDING STATES OF THE STATES O

Of all a stress

A

The possible molecular mechanisms of high UA promote the occurrence and development of cardiovascular diseases. High UA regulates numerous molecular signals such as inflammation, oxidative stress, insulin resistance, and endothelial dysfunction, thus affects the progression and prognosis of cardiovascular diseases including hypertension (A), atherosclerosis (B), atrial fibrillation (C) and heart failure (D).

AMPK, AMP-activated protein kinase; mROS, mitochondrial ROS; mTOR, mammalian target of rapamycin; NLRP3, nodlike receptor protein 3; RAS, renin-angiotensin system; UA, uric acid.

Yu W and Cheng J-D (2020) Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 11:582680. doi: 10.3389/fphar.2020.582680

Atherosclerosis

and

et al. 2020)

AMPK-

Arria Fibilition

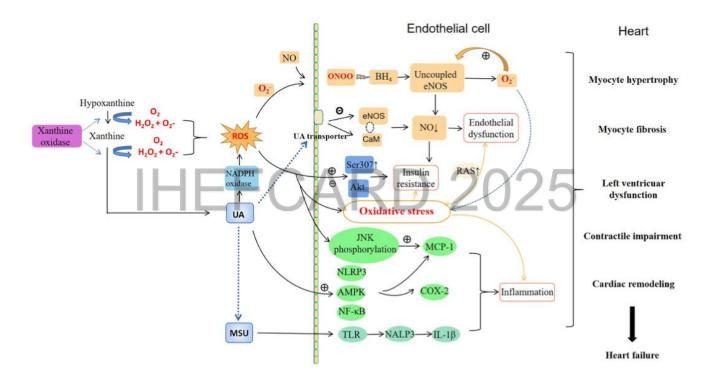
NLRP3 inflationson

WTOR-MROS

Endollacijal U.Stunction

Left atrai entraise

Emane Kyl 50000


RAS activation

Inflammaion Onidation

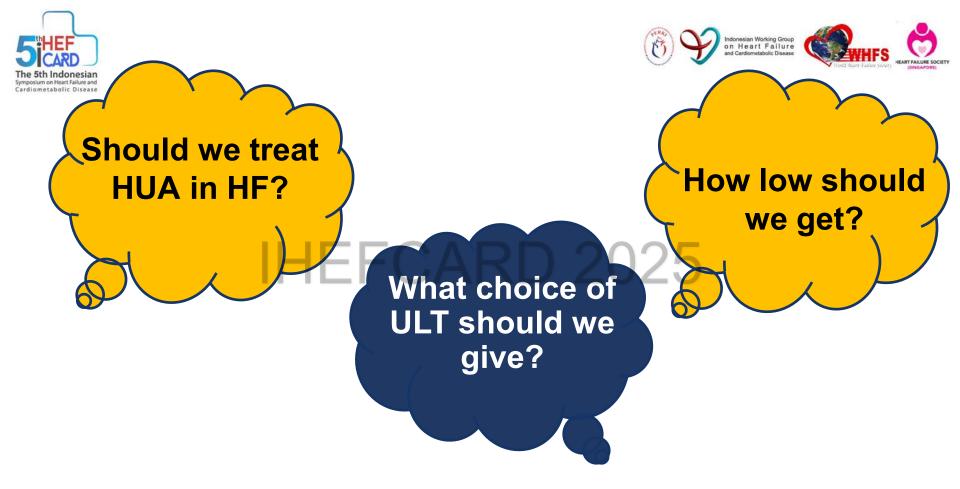
Potential Mechanisms of Hyperuricemia in Mediating HF

Yu W and Cheng J-D (2020) Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 11:582680. doi: 10.3389/fphar.2020.582680

Hiperuricemia in Heart Failure

Study	Study design	Population	No. of subjects	Main findings/ outcomes
Heart failure				
Pavlusova et al., 2019	Prospective	Acute HF	3610	Hyperuricemia was associated with unfavorable cardiovascular risk
Palazzuoli et al., 2017	Prospective	Acute HF	³²⁴ 202	Hyperuricemia was the only independent predictor of HF hospitalization or death
Vaduganathan et al., 2014	Double-blind placebo RCT	Worsening chronic HF	3955	sUA is commonly elevated in patients hospitalized for worsening chronic HF
Huang et al., 2014	Meta-analysis	Chronic HF	427917	Elevated sUA is associated with an increased risk of incident HF and adverse outcomes in HF patients

Yu W and Cheng J-D (2020) Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 11:582680. doi: 10.3389/fphar.2020.582680



Hiperuricemia's Potential Impact on **Decongestion in HF**

- Hyperuricemia may be caused or aggravated by diuretic therapy
- Increase diuretic resistance
- Reduce renal function
- HFFCARD 2025 Increase inflammation lead to
- Increase oxidative stress

Yu W and Cheng J-D (2020) Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 11:582680. doi: 10.3389/fphar.2020.582680

-

Population/Study (author)	Sample size	Design	Tested strategies	Comparator	Results
	bumple blue	2	inter intergres	eoniparator	
Hypertension Soletsky et al. [26]	60	DB, crossover	Allopurinol and probenecid	Placebo	In prehypertensive obese adolescents, urate-lowering therapy reduced clinic SBP $(-10.1 \text{ vs.} -10.2 \text{ vs.} 1.7 \text{ mmHg}, p < 0.001)$
Segal et al. [29]	110	DB	Allopurinol plus chlorthalidone	Placebo plus chlorthalidone	In hypertensive African-Americans, allopurinol non-significantly reduced clinic SBP $(-3.4 \text{ vs. } 0.8 \text{ mmHg}, p = 0.06)$
Ischemic stroke Higgins et al. [27]	80	DB	Allopurinol	Placebo	Allopurinol lowered central and brachial SBP and reduced carotid IMT progression
Type 1 DM PERL [33]	530	DB	Allopurinol	Placebo	Allopurinol did not delay GFR decline (between-group difference 0.001, 95% CI –1.9 to 1.9 ml/min/1.73 m ²)
CKD UPWARD [30]	65	DB	Topiroxostat	Placebo	Changes in eGFR were superior in the topiroxostat group (-0.2 vs.)
FEATHER [31]	441	DB	Febuxostat	Placebo	-4.0 ml/min/1.73 m ² , $p = 0.03$) In CKD patients with hyperuricemia, febuxostat did not mitigate the decline in eGFR slope (0.23 vs0.47 ml/min/1.73 m ² per year, $p = 0.1$)
CKD-FIX [32]	363	DB	Allopurinol	Placebo	The change in eGFR was not significantly different between the 2 groups $(-3.33 \text{ vs.} - 3.23 \text{ ml/min}/1.73 \text{ m}^2, p = 0.85)$
Heart failure		55	A11 · 1		
Farquharson et al. [48]	11	DB, crossover	Allopurinol	Placebo	Allopurinol improved endothelial dysfunction assessed by forearm blood flow response to acetylcholine
OPT-CHF [50]	405	DB	Oxypurinol	Placebo	Clinical improvements including events and HF status did not differ between the 2 groups (45% vs. 43% , $p = 0.42$)
EXACT-HF [51]	253	DB	Allopurinol	Placebo	In hyperuricemic patients with HFrEF, allopurinol did not improve clinical status, exercise capacity, QOL, or LVEF
CAD Noman et al. [72]	65	DB, crossover	Allopurinol	Placebo	Allopurinol increased time to ST depression (median difference 43 s, 95% CI 31–58 s) and exercise time (difference 58 s, 95% CI 45–77 s)
Hyperuricemia/gout PRIZE [28]	483	Open-label	Febuxostat	Lifestyle modification	Mean% change of CCA-IMT in the febuxostat group was not significantly
FREED [71]	1070	Open-label	Febuxostat	Allopurinol (100 mg)	different (1.2% vs. 1.4%, $p = 0.83$) Febuxostat was superior in the rate of composite cerebral, cardiovascular, and result superior (2.2.3% vs. 2.8.7% $p = 0.02$)
CARES [69]	6190	DB	Febuxostat	allowed Allopurinol	and renal events (23.3% vs. 28.7%, $p = 0.02$) Non-inferiority of febuxostat was met ($p = 0.002$), though all-cause and CV
FAST [70]	6128	Open-label	Febuxostat	Allopurinol	mortality was significantly higher in the febuxostat group Non-inferiority of febuxostat was met (p <0.001) with no significant increas of risk of death

MENDELIAN RANDOMIZATION

Urate, Blood Pressure, and Cardiovascular Disease

Evidence From Mendelian Randomization and Meta-Analysis of Clinical Trials

Dipender Gill[®], Alan C. Cameron[®], Stephen Burgess, Xue Li, Daniel J. Doherty[®], Ville Karhunen, Azmil H. Abdul-Rahim[®], Martin Taylor-Rowan, Verena Zuber, Philip S. Tsao[®], Derek Klarin[®], VA Million Veteran Program, Evangelos Evangelou, Paul Elliott, Scott M. Damrauer[®], Terence J. Quinn[®], Abbas Dehghan, Evropi Theodoratou,† Jesse Dawson,† Ioanna Tzoulaki[®]†

Study name		Statistics for each study			-		Odds r	atio and	95% Cl	
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value		_			
liggins 2014	0.709	0.148	3.399	-0.429	0.668					
Khan 2008	0.312	0.012	8.285	-0.696	0.486	_	-		- 1	
Rentoukas 2010	0.510	0.119	2.188	-0.906	0.365					
Separham 2016	0.485	0.086	2.740	-0.819	0.413			╼┼─		
Faheraghdam 2014	0.470	0.080	2.749	-0.838	0.402			╼┼─		
Zhang 2012	0.265	0.090	0.775	-2.426	0.015					
Huang, 2017	0.235	0.025	2.178	-1.275	0.202	-				
	0.396	0.216	0.729	-2.977	0.003					
						0.01	0.1	1	10	100
						Favo	ours Urate Lov	vering	Favours Control	

Figure 6. Forest plot of randomized controlled trial estimates for risk of major adverse cardiovascular events in patients with existing cardiovascular disease receiving urate-lowering therapy or placebo/no treatment.

I² heterogeneity statistic: 0%. A random-effects meta-analysis model was used.

Gill D, Cameron AC, et al. Urate, Blood Pressure, and Cardiovascular Disease: Evidence From Mendelian Randomization and Meta-Analysis of Clinical Trials. Hypertension. 2021 Feb;77(2):383-392. doi: 10.1161/HYPERTENSIONAHA.120.16547. Epub 2020 Dec 28. PMID: 33356394; PMCID: PMC7803439.

🕐 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🞯 @ina.hf | ihefcard.com

Uric acid Lowering Therapy (ULT)

- Currently, two potent classes of ULT medications are commonly used in clinical practice:
 - XOI (e.g., allopurinol, febuxostat)
 - Increasing UA excretion drugs (e.g., benzbromarone, probenecid)

5 Control Cont	Pathophysiological mechanisms	UA	ROS	Mechanism underlying beneficial effects of ULT		
	Oxidative stress	 a. UA functions as a pro-oxidant in the hydrophobic intracellular environment (by generating ROS or stimulating NADPH oxidase) b. UA induces endothelial dysfunction-oxidative stress with an activation of the RAS 	 a. ROS interacts with NO to produce ONOO⁻ and starts detrimental oxygen radical effects on endothelial cell b. ROS induces cardiac fibroblast proliferation and activates MMP and leads to cardic fibrosis and extracellular remodelling c. ROS depresses Ca²⁺ accumulation and Ca²⁺ ATPase of SR, and decreases cardiac contractility 	Allopurinol has been reported to improve myocardial oxidative stress and attenuate cardiac fibrosis in cardiac diastolic dysfunction (42)	roup Ure ease	Itself Nort Faller North
	Endothelial dysfunction	 a. UA induces oxidative stress, inflammation, or proliferation of VSMC, and reduces endothelial NO bioavailability b. UA attenuates eNOS activity and NO production or decreasing the interaction between eNOS and CaM or enhancing PKC-dependent eNOS phosphorylation 	 a. ROS-reduced ONOO⁻ leads to lipid peroxidation and destroys endothelial membrane b. ONOO⁻ causes eNOS uncoupling c. O₂⁻ induces endothelium injury directly and further promotes eNOS uncoupling d. ROS regulates canonical Wnt signaling and induces vascular endothelial dysfunction 	Allopurinol had effects on endothelial function that significantly increased forearm blood flow response to acetylcholine (43)		
	Vascular inflammation	 a. UA induces inflammation <i>via</i> NLRP3- inflammasome-mediated VSMC proliferation or AMPK and NF-κB signal pathways b. MSU activates NALP3 inflammasome and secrets IL-1β 	ROS induces the phosphorylation of JNK, and contributes to the production of MCP-1 in macrophages	Febuxostat has been shown to control the formation of ROS and act against vascular inflammation promoted by oxidative stress (43)		
	LV dysfunction	 a. UA-induced inflammation can reduce ability of the myocardium to contract and relax b. UA activates calpain-1 and ER stress and induces cardiomyocyte apoptosis, interstitial fibrosis and diastolic dysfunction 	ROS leads to ventricular remodeling through a ET-1 pathway	Allopurinol diminished the ROS effects on myofilament Ca ²⁺ sensitivity, contributing to the improvement of LV contractile function and efficiency		
	IR	 a. UA reduces NO bioavailability and generation of mitochondrial oxidative stress to result in IR b. UA inhibits insulin-induced glucose uptake in H9c2 and primary cardiomyocytes 	ROS plays a causal role in IR-related CV complications	Benzbromarone improved in IR index (41)		

ULURE SOCIETY

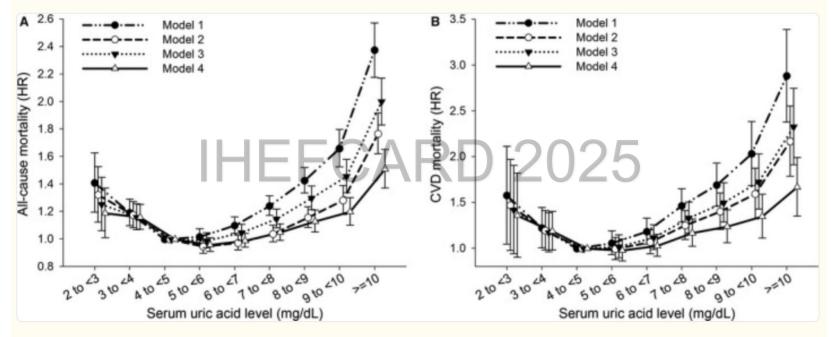
XO, xanthine oxidase; UA, urate acid; ROS, reactive oxygen species; ULT, uric acid lowering therapies; RAS, renin-angiotensin system; NO, nitric oxide; ONOO-, peroxynitrite; O2-, superoxide anion; MMP, matrix metalloproteinases; SR, sarcoplasmatic reticulum; VSMC, Vascular Smooth Muscle Cells; eNOS, endothelial nitric oxide synthase; CaM, calmodulin; PKC,

Study	Study design	Population	Mean follow-up	Treatment	Results	CV risk by treatment			
Comparison between a XO inhibitor versus placebo									
Awsan Noman et al (55), (UK)	Randomized, double-blind, placebo-controlled, crossover study	Chronic stable angina	12-weeks	Allopurinol	Allopurinol prolonged the time to the total exercise time (58s median increase, p=0.0003), the time to angina (38s median increase, p=0.001), and ST-segment depression (43s median increase, p=0.0002)	Reduced			
Li Wei et al (56), (Scotland)	Cohort study	Elderly (≥60 years old)	5-years	Allopurinol	High-dose (≥300 mg) allopurinol had reduced risk of CV events (adjusted HR 0.69,95%Cl 0.50–0.94) and mortality (adjusted HR 0.75,95% Cl 0.59–0.94)	Reduced			
Lhanoo Gunawardhana et al (57), (USA)	Phase II, multicenter, placebo-controlled, double-blind proof-of- concept study	Gout	3-months	Febuxostat	Febuxostat lowered serum UA effectively and did not show an increased risk of CV complications	No difference			
Comparison betwe	een XO inhibitors								
William B. White et al (58), (USA)	Multicenter, double- blind, noninferiority trial	Gout with CVD	32- months	Allopurinol <i>vs</i> Febuxostat	All-cause and CV mortality were higher in the febuxostat group than in the allopurinol group [HR for death from any cause, 1.22 (95% Cl, 1.01 to 1.47); HR for CV death, 1.34 (95% Cl, 1.03 to 1.73)].	Higher risk in febuxostat			
Arrigo Francesco Giuseppe Cicero et al (59), (Italy)	Cohort study (prospective)	Elderly with CHF	5-years	Allopurinol <i>vs</i> Febuxostat	Febuxostat had a better CV outcome in patients treated with in comparison with allopurinol (The cumulative CV survival was 0.96 (95% CI 0.93–0.99) in febuxostat group and 0.89 (95% CI 0.84–0.93) in allopurinol group.	Lower risk in febuxostat			
Isla S Mackenzie et al, (UK, Denmark (60), and Sweden)	Multicentre, prospective, open- label, non-inferiority trial	Elderly with Gout	4-years	Allopurinol <i>vs</i> Febuxostat	Febuxostat is non-inferior to allopurinol therapy about the primary cardiovascular endpoint, and it is not associated with an increased risk of death or serious adverse events compared with allopurinol.	No difference			

XO, xanthine oxidase; CVD, cardio vascular disease; UA, urate acid; CHF, Congestive heart failure.

Elevated uric acid as a risk factor

Vol. 20, Nº 11 - 18 Aug 2021


Prof. Claudio Borghi , FESC

Hyperuricaemia is defined as SUA ≥6.0 mg/dL in women and ≥7.0 mg/dL in men [5]. From the discovery of hyperuricaemia as the cause of gout in the 19th century, several epidemiological and genetic studies have shown an association between high SUA levels and the incidence of several cardiovascular (CV) diseases and risk factors [6]. The treatment of hyperuricaemia is recommended for all symptomatic patients, namely those with gout, tophi, urate nephrolithiasis, or severe comorbidities [5]. The target for long-term SUA treatment is 6.0 mg/dL. Some studies suggest that people with asymptomatic hyperuricaemia should be treated only if their calculated CV risk at 10 years is high or very high, or if they have high SUA levels (>8 mg/dL). However, international guidelines/consensus documents recommend not to treat asymptomatic hyperuricaemia under any circumstances [5].

2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

13.10 Gout and arthritis

Hyperuricemia is a common finding in patients with CHF with a prevalence up to 50%.^{817,818} Hyperuricemia may be caused or aggravated by diuretic treatment and it is related to symptoms, exercise capacity, severity of diastolic dysfunction and long-term prognosis.^{818,819} For every 1 mg/dL increase in serum uric acid levels the risk of all-cause mortality and of HF hospitalization increases by 4% and 28%, respectively.⁸²⁰ Both febuxostat and allopurinol reduce uric acid levels. However, allopurinol was associated with a lower rate of all-cause death and CV death, compared with febuxostat, in a prospective, multicentre, double-blind, non-inferiority trial enrolling 6190 patients with gout and CV disease, 20% with HF, with a median follow-up of 32 months.⁸²¹ Allopurinol is therefore recommended as the firstchoice urate-lowering drug in HF patients with no contraindication. There is no evidence that uric acid-lowering treatment has beneficial effects on LV function, symptoms or outcomes of patients with HF.⁸²²⁻⁸²⁴

With respect to treatment of acute gout attacks, non-steroidal anti-inflammatory drugs (NSAIDs) can worsen renal function and precipitate acute HF decompensation. Colchicine should be preferred as it is associated with less side effects.⁸²⁵ However, it, too, should be used with caution in patients with severe renal dysfunction and is contraindicated in patients on dialysis. An increase in ventricular vulnerability was shown in experimental models.⁸²⁶

Take Home Messages

- Elevated serum uric acid level is associated with cardiovascular diseases such as hypertension, CKD, HF, and CAD, and is useful for risk stratification.
- Despite numerous investigations including Mendelian randomization studies, the causality is still controversial.
- The beneficial effect of uric acid-lowering treatment has been suggested on surrogate endpoints.
- The improvement in clinical outcomes need further studies, focusing on patients with elevated uric acid levels and high cardiovascular risks.

Uric acid and risk of heart failure: a systematic review and metaanalysis

He Huang ¹, Baotao Huang, Yulin Li, Yan Huang, Jing Li, Hongmei Yao, Xianchao Jing, Jianrong Chen, Ji Wang

Abstract

Aims: We aimed to perform a systematic review and meta-analysis to assess the association between serum uric acid and incident heart failure (HF)/prognosis of HF patients.

Methods and results: A systematic electronic literature search was conducted in Embase (Ovid SP, from 1974 to May 2013), Medline (Ovid SP, from 1946 to May 2013), and the Chinese Biomedical Literature Database (CBM, from 1978 to May 2013) to identify studies reporting on the association between serum uric acid and HF. Either a random effects model or a fixed effects model was used for pooling data. Five studies reporting on incident HF and 28 studies reporting on the adverse outcomes of HF patients were included. The results showed that hyperuricaemia was associated with an increased risk of incident HF [hazard ratio (HR) 1.65, 95% confidence interval (Cl) 1.41-1.94], and the risk of all-cause mortality (HR 2.15, 95% Cl 1.64-2.83), cardiovascular mortality (HR 1.45, 95% Cl 1.18-1.78), and the composite of death or cardiac events (HR 1.39, 95% Cl 1.18-1.63) in HF patients. For every 1 mg/dL increase in serum uric acid, the odds of development of HF increased by 19% (HR 1.19, 95% Cl 1.17-1.21), and the risk of all-cause mortality and the composite endpoint in HF patients increased by 4% (HR 1.04, 95% Cl 1.02-1.06) and 28% (HR 1.28, 95% Cl 0.97-1.70), respectively. Subgroup analyses supported the positive association between serum uric acid and HF.

Conclusions: Elevated serum uric acid is associated with an increased risk of incident HF and adverse outcomes in HF patients.