

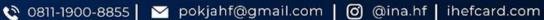
The Road to myocardial revival in Heart Failure reduce Ejection Fraction (HFrEF)

*Andika Rizki Lubis, M.D

Tarakan General Hospital Jakarta

Indonesian Heart Failure and Cardiometabolic disease working group

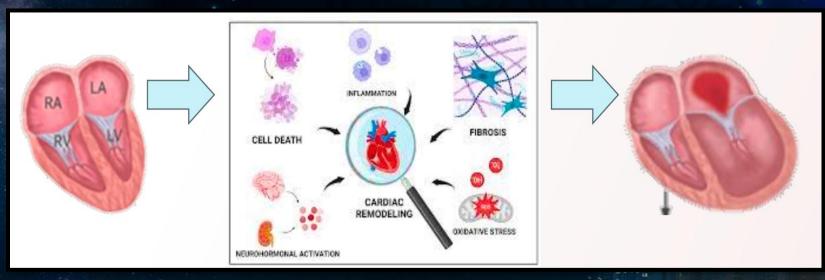
:::::



Disclosure

• Supported by Novartis IHEFCARD 2025

.


Definition

- Cardiac remodeling 2 a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury.
- The clinical diagnosis of remodeling 2 detection of morphological changes in the cavity diameter, mass (hypertrophy and atrophy), geometry (heart wall thickness and shape), areas of scar after MI, fibrosis and inflammatory infiltrate (e.g in myocardititis)

Azevedo PS, et al. Arq Bras Cardiol. 2016; 106(1):62-69

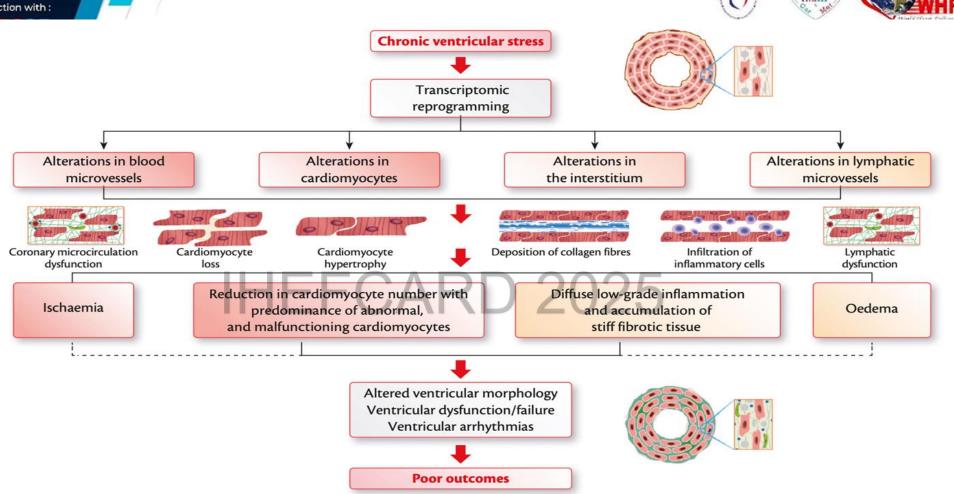
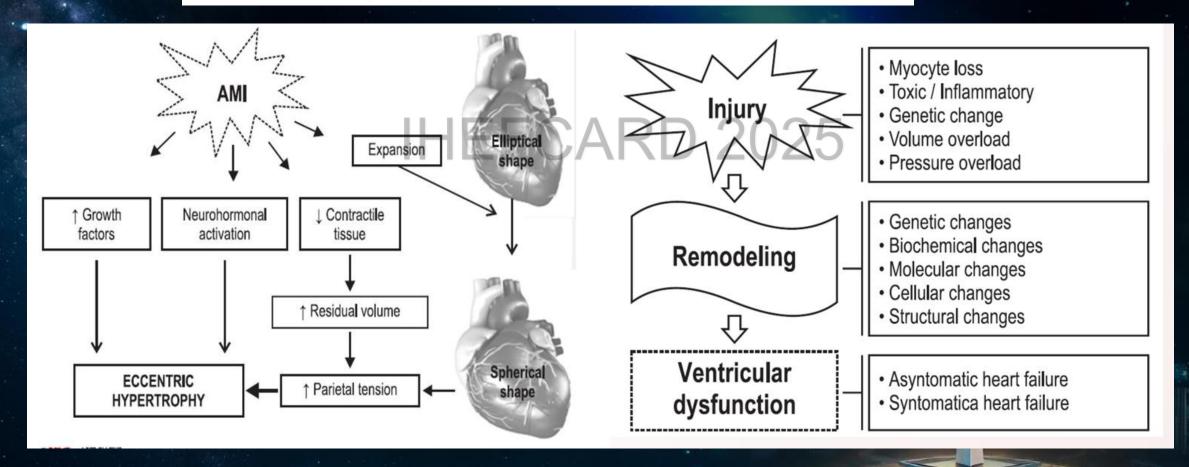


Figure 5.3.1 Sequence of alterations that develop in the microstructural components of the myocardium in the chronically stressed ventricle and that, in turn, contribute to the development of alterations in ventricular morphology and function associated with poor outcomes of ventricular remodelling.

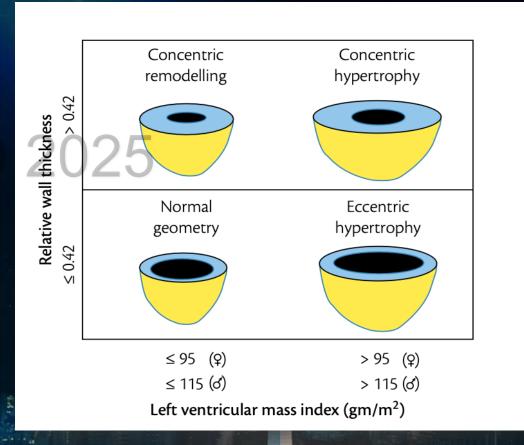
The ESC Textbook of Heart Failure. HFA (Heart Failure Association) 2024

Review Article



Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological **Mechanisms and Pharmacologic Treatment**

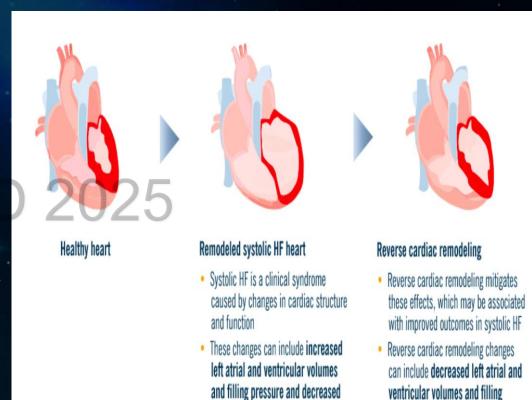
Paula S. Azevedo, Bertha F. Polegato, Marcos F. Minicucci, Sergio A. R. Paiva, Leonardo A. M. Zornoff Faculdade de Medicina de Botucatu, São Paulo, SP - Brazil



Ventricular remodelling

- Early phases of myocardial injury 2 reduction of cardiac function without changes in size or structure, whereas eccentric remodelling occurs within weeks, months, or even years.
- Ventricular remodelling ② divided into 2 groups concentric and eccentric. Concentric remodelling is defined as ventricular hypertrophy with increased wall thickness, but without dilatation and usually with normal systolic function.
- Neurohumoral inhibition not only may improve outcome, but also may even prevent or reverse, at least in part, eccentric remodelling.

The ESC Textbook of Heart Failure. HFA (Heart Failure Association) 2024

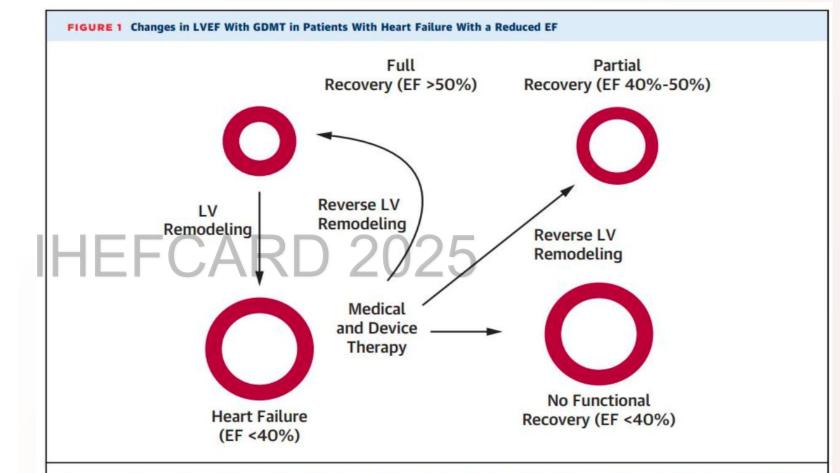


pressure and increased ejection fraction

- Reverse remodelling (RR) ② a process the heart undergoes structural and functional changes that ② improvement to a more normal state.
- RR can result from 2 pharmacological treatment, interventional/ surgical procedures) or after certain physiologic events or lifestyle modification, such as partum, significant weight loss, or alcohol abstinence.
- Insofar as the calculation of LVEF incorporates LV end-diastolic volume in the denominator of the equation, improvements in LVEF are associated with a reciprocal decrease in LV end-diastolic volume Preverse LV remodeling

ejection fraction

Inês Falcão-Pires et all. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. uropean Journal of Heart Failure (2024)


in conjunction with: Congress 2025

Patients with heart failure with recovered ejection fraction (HFrecEF) treated with guideline-directed medical and device therapies (GDMT) may have a complete recovery of left ventricular ejection fraction (LVEF) >50%, partial recovery of LVEF (EF 40% to 50%), or no functional recovery of LVEF (EF <40%).

Predictors Reverse Remodeling

VOL. 76, NO. 6, 2020

THE PRESENT AND FUTURE

JACC SCIENTIFIC EXPERT PANEL

Heart Failure With Recovered Left Ventricular Ejection Fraction

JACC Scientific Expert Panel

Jane E. Wilcox, MD, James C. Fang, MD, Kenneth B. Margulies, MD, Douglas L. Mann, MD

TABLE 2 Predicting Reverse LV Remodeling Among Patients With HFrEF			
	Predictors of Reverse LV Remodeling		
Clinical parameters	Nonischemic etiology		
	Lower duration of HF		
	Female		
	No LBBB		
	LBBB in CRT		
Genetic factors	Pathogenic gene variants not involving structural cytoskeletal proteins or Z-disk proteins		
Echocardiography/CMR imaging	Lower LVEF, greater contractility on strain imaging Greater LV diameters LGE absence		
Biomarkers	Lower NT-proBNP Lower troponin Lower sST2 Galectin-3, emerging biomarkers (mimecan, microRNAs, orexin)		

Modified with permission from Aimo et al. (58).

CRT = cardiac resynchronization therapy; HF = heart failure; HFrEF = heart failure with a reduced ejection fraction; LBBB = left bundle branch block; LGE = late gadolinium enhancement; LVEF = left ventricular ejection fraction; NT-proBNP = N-terminal pro-B-type natriuretic peptide; sST2 = soluble ST (suppression of tumorigenicity) 2.

ESC HEART FAILURE

ORIGINAL ARTICLE

ESC Heart Failure 2024: 11: 783-794

Published online 20 December 2023 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.14619

Incidence and predictors of heart failure with improved ejection fraction category in a HFrEF patient population

Balázs Solymossi¹, Balázs Muk¹, Róbert Sepp², Tamás Habon³, Attila Borbély⁴, Krisztina Heltai⁵, Zsuzsanna Majoros⁶, Zoltán Járai⁷, Dénes Vágány⁶, Ákos Szatmári⁸, Erzsébet Sziliczei⁹, Fanni Bánfi-Bacsárdi¹ and Noémi Nyolczas^{1*}

Table 3 Factors predicting the development of the HFimpEF category in the whole study population (833 patients)—univariate and multivariate logistic regression analysis

	OR	95% CI	P value		
Parameters of univariate logistic regress	ion an	alysis			
Female sex	2.08	1.42 - 3.04	< 0.001		
<65 years of age	1.50	1.05-2.14	0.026		
Non-ischaemic aetiology	2.05	1.41-3.00	< 0.001		
HR < 90 min ⁻¹	1.68	1.11 - 2.54	0.015		
eGFR (increase of 5 mL/min/1.73 m ²)	1.08	1.01-1.15	0.016		
QRS (increase of 10 ms)	0.93	0.87 - 0.99	0.023		
LVESD (increase of 5 mm)	0.85	0.76-0.96	< 0.01		
LVEDD (increase of 5 mm)	0.82	0.73 - 0.93	< 0.01		
LA diameter (increase of 5 mm)	0.80	0.69 - 0.93	< 0.01		
Parameters of multivariate logistic regression analysis					
Female sex	1.73	1.01 - 2.96	0.045		
Non-ischaemic aetiology	1.95	1.15 - 3.30	0.013		
LVEDD ≤ 60 mm	2.04	1.18-3.51	0.011		

of Cardiology

European Journal of Heart Failure (2024) 26, 1454-1479 doi:10.1002/ejhf.3264

REVIEW ARTICLE

Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on **Myocardial Function**

Inês Falcão-Pires¹*, Ana Filipa Ferreira¹, Fábio Trindade¹, Luc Bertrand², Michele Ciccarelli⁴, Valeria Visco⁴, Dana Dawson⁵, Nazha Hamdani^{6,7,8,9}, Linda W. Van Laake¹⁰, Frank Lezoualc'h¹¹, Wolfgang A. Linke¹², Ida G Lunde^{13,14}, Peter P. Rainer^{15,16,17}, Mahmoud Abdellatif^{15,16}, Jolanda Van der Velden¹⁸, Nicola Cosentino 19,20, Alessia Paldino 21,22, Giulio Pompilio 19,23, Serena Zacchigna^{21,22}, Stephane Heymans^{24,25}, Thomas Thum²⁶, and Carlo Gabriele Tocchetti²⁷

Table 1 Class I drugs that induce reverse remodelling

↓ Hypertrophy
↓ Fibrosis
↑ Coronary flow reserve
↓ NT-proBNP
↑ LVEF
↓ Hypertrophy
↓ LVEDVI, LVESVI
\uparrow Diastolic function (\downarrow LAVI, \downarrow E/e')
↓ NYHA class
↓ Hospitalization
↓ Mortality risk
↓ Hypertrophy
↓ LVESV and LVEDV
↑ Ejection fraction
↓ Hospitalization
↓ Mortality risk
,
•

Left Ventricular Reverse Remodeling in Heart Failure: Remission to Recovery

Jacinthe Boulet, MD, CM^a and Mandeep R. Mehra, MD, MSc, FRCP^b

^aDepartment of Medicine, Division of Cardiology, Montreal Heart Institute, Montreal, Canada; ^bDepartment of Medicine, Division of Cardiology, Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston, Massachusetts, USA

LVEF Improvements with Reverse Remodeling **ACEI or ARB** 1-4%78-80 SGLT2i 1-6%89-90 BB 4-12%81-84 CRT 2-24%91-93 **MRA** 4%85,86 MitraClip 3%94,95 ARNI 9-15%87,88

LV Size Reductions with Reverse Remodeling

ACEI or ARB

LVEDV 12-13 ml/m^{2 96-97}

LVESV 13 ml/m^{2 96-97}

LVEDD 2.4 mm98

LVESD 6.2 mm98

LVESV 4.8 ml99

MRA

LVEDV 17.3 ml¹⁰⁰ LVESV 18.5 ml¹⁰⁰

ARNI

LVEDV_i 12.25 ml/m^{2 87} LVESV_i 15.29 ml/m^{2 87}

LV mass_i 2.6-13.7 g/m² 101-103

SGLT2i

CRT

LVEDV_i 21 ml/m² 104 LVESV: 18.4 ml/m² 104

MV repair

LVEDV_i 15 ml/m^{2 105-106}

LVESV: 6.6-13 ml/m² 105-107

MV replacement

LVESV; 6.5-6.8 ml/m² 106-107

MitraClip

LVEDV 26 ml¹⁰⁸

LVESV 16 ml¹⁰⁸

Cellular and molecular determinants of LV function recovery

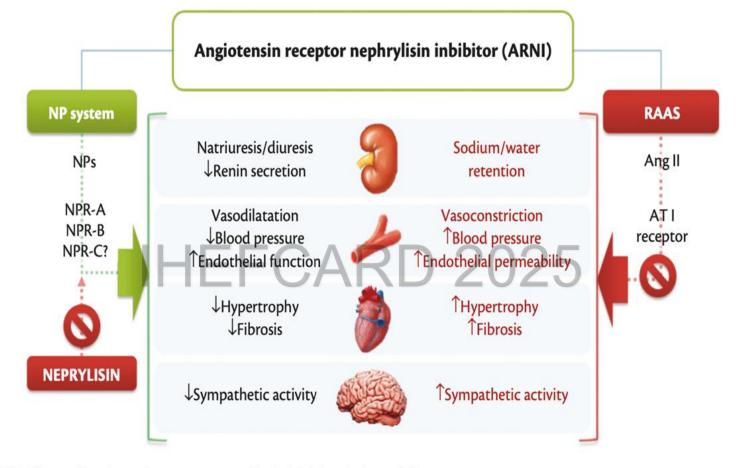
	Beta-Blocker	ACE Inhibitor	ARB	Aldosterone Antagonists	LVAD	CRT	CSD
Myocyte defects							
Hypertrophy	Decreased	Decreased	Decreased	Decreased	Decreased	Decreased	Decreased
Fetal gene expression	Decreased	Decreased	Decreased	ND	Decreased	Decreased	Decreased
Myocytolysis	Decreased	ND	ND	ND	Decreased	ND	ND
Beta-adrenergic desensitization	Decreased	Decreased	Decreased	ND	Decreased	Decreased	Decreased
EC coupling	Increased	Increased	Increased	ND	Increased	Increased	Increased
Cytoskeletal proteins	ND	ND	ND	Increased	Increased	ND	Increased
Myocardial defects							
Myocyte apoptosis	Decreased	Decreased	Decreased	ND	Decreased	Decreased	Decreased
MMP activation	Decreased	Decreased	Decreased	Decreased	Decreased	Decreased	Decreased
Fibrosis	Decreased	Decreased	Decreased	Decreased	Increased*	Decreased	Decreased
Angiogenesis	Increased	Increased	Increased	Increased	Decreased	Increased	Increased
LV dilation	Decreased	Stabilized	Stabilized	Stabilized	Decreased	Decreased	Decreased

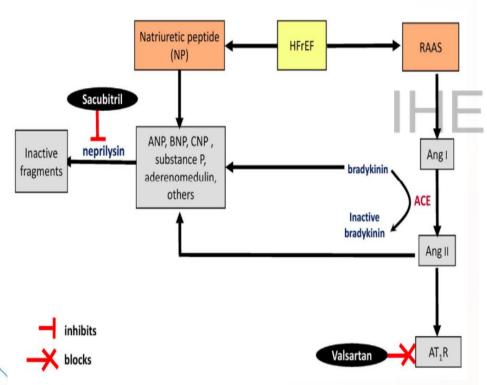
contraction; LV = left ventricular; LVAD = left ventricular assist device; MMP = matrix metalloproteinase; ND = not done.

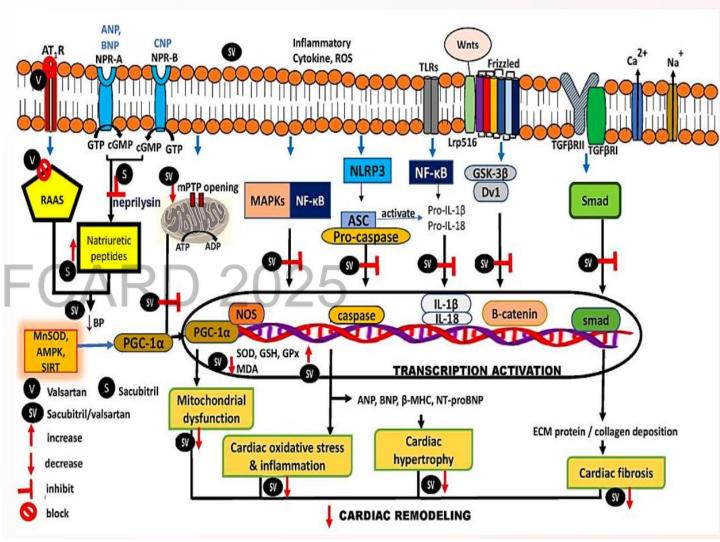
ESC Heart Failure 2024; 11: 783-794

DOI: 10.1002/ehf2.14619

ARNi in Cardiac Reverse Remodelling




Figure 8.3.2 Beneficial effects of angiotensin receptor—neprilysin inhibitor in heart failure. Reproduced from Volpe M. Natriuretic peptides and cardio-renal disease. Int J Cardiol. 2014 Oct 20;176(3):630–9. doi: 10.1016/j.ijcard.2014.08.032 with permission from Elsevier.


The ESC Textbook of Heart Failure. HFA (Heart Failure Association) 2024

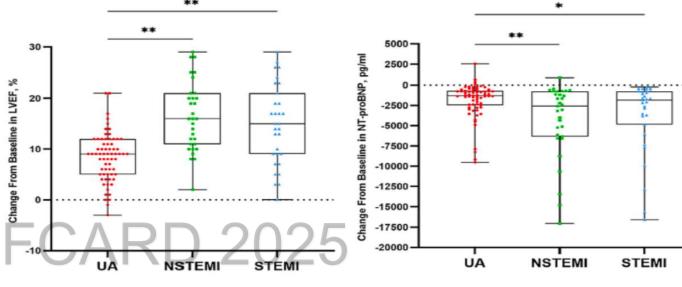
Molecular mechanisms of sacubitril/valsartan in cardiac remodeling

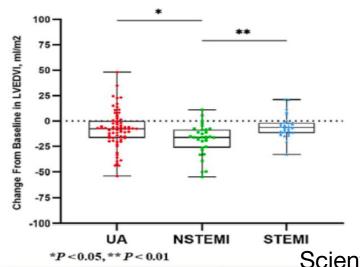
Mustafa NH, Jalil J, Zainalabidin S, Saleh MSM, Asmadi AY and Kamisah Y, 2022 Molecular mechanisms of sacubitril/valsartan incardiac remodeling. Front. Pharmacol. 13:892460. doi: 10.3389/fphar.2022.892460

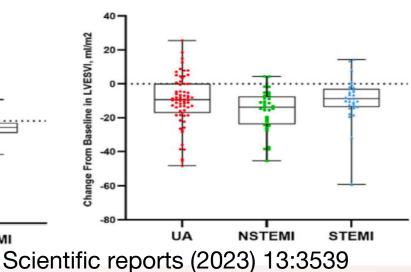
ARNi and Reverse Remodelling

- Several mechanistic studies 2 the beneficial effects of sacubitril/valsartan in HFrEF include LV reverse remodelling, improvement in systolic and diastolic function, and reduction in functional mitral regurgitation and arterial stiffness.
- In the Prospective Study of Biomarkers, Symptom Improvement, and Ventricular Remodeling During Sacubitril/ Valsartan Therapy for HF (PROVE- HF), the median LV ejection fraction (LVEF) increased from approximately 28% 2 38% during 12 months, whereas both end-diastolic and end-systolic volume indices decreased significantly
- the Effects of Sacubitril/ Valsartan vs. Enalapril on Aortic Stiffness in Pa to Moderate HF With Reduced Ejection Fraction (EVALUATE- HF) trial, in which signs of LV reverse remodelling became apparent as early as 12 weeks of sacubitril/valsartan treatment, compared to treatment with enalapril.

ARNi in ACS with HF

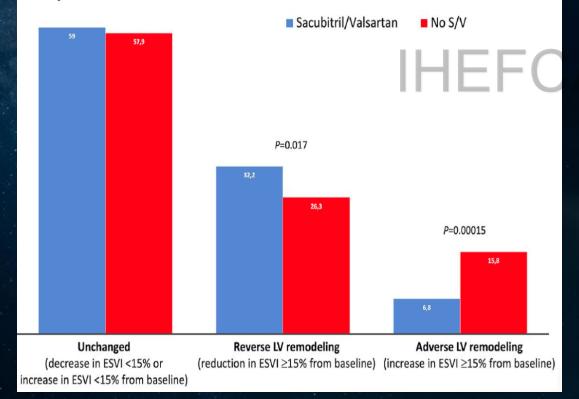

ESC Heart Failure 2024: 11: 937-949


Published online 15 January 2024 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.14646


Improved heart function and cardiac remodelling following sacubitril/valsartan in acute coronary syndrome with HF

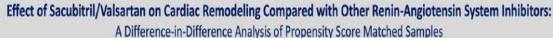
Henan Liu^{1,2†}, Yongkang Su^{1,3†}, Jian Shen^{1,3}, Yang Jiao^{1,3}, Ying Li^{1,3}, Bing Liu⁴, Xiaoling Hou¹, Qinhua Yundai Chen¹, Zhijun Sun¹, Qing Xi⁵, Bin Feng^{1*} and Zhenhong Fu^{1*}

- o 275 ACS patients with reduced left ventricular ejection fraction after PCI
- Patients with myocardial infarction and reduced left ventricular ejection fraction might benefit more from the initiation of S/V as first-line heart failure treatment after PCI.


ORIGINAL ARTICLE

Clinical Research in Cardiology (2024) 113:856-865 https://doi.org/10.1007/s00392-023-02306-0

ORIGINAL PAPER


Effect of sacubitril/valsartan on cardiac remodeling compared with other renin-angiotensin system inhibitors: a difference-in-difference analysis of propensity-score matched samples

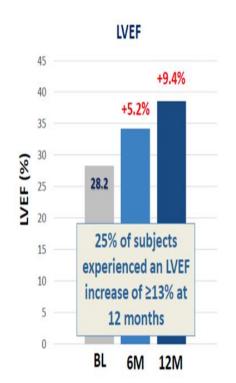


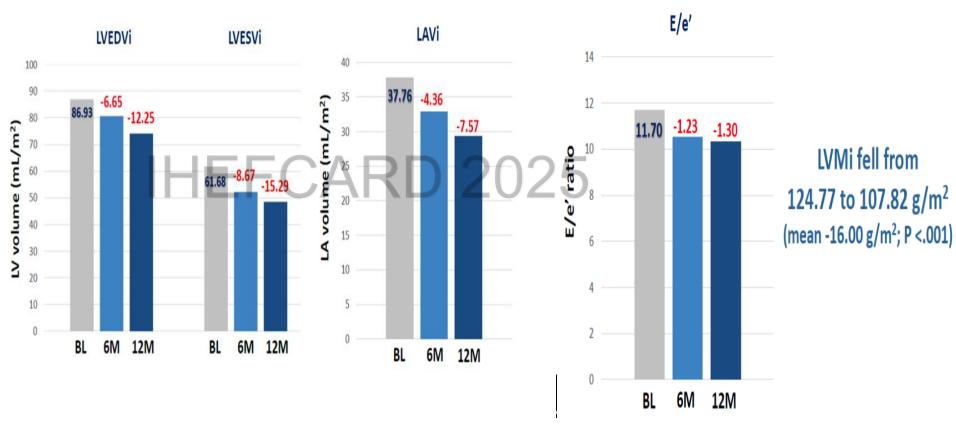
ACE-Inhibitors/ARBs + Beta-Blockers (n=354)

Sacubitril/Valsartan + Beta-Blockers (n=354)

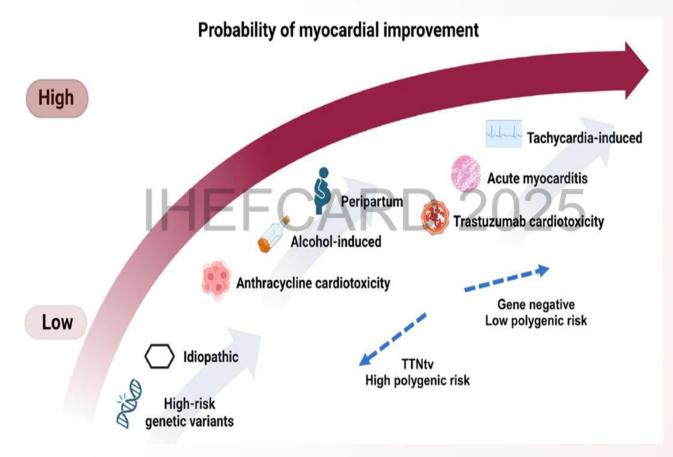
Changes on cardiac remodeling parameters: Echocardiography at baseline and after 8-12 months

Results


PROVE-HF Echocardiographic results at 6 & 12 months



Baseline to 12 months: all P <.001



Suggested probability of LVEF improvement and normalization among different common aetiologies of dilated cardiomyopathy

Current Heart Failure Reports (2023) 20:542-554 https://doi.org/10.1007/s11897-023-00636-8

NP system

- The NP system acts in opposition to the effects of RAAS and SNS activation 2 protective effects on the cardiovascular system by increasing renal natriuresis and diuresis, promoting vasodilatation, and decreasing the activity of the RAAS and SNS.
- There are three types on NPs, namely, atrial natriuretic peptide (ANP), B- type natriuretic peptide (BNP), and C- type natriuretic peptide (CNP).

Atrial natriuretic peptide (ANP) B-type natriuretic peptide (BNP) C-type natriuretic peptide (CNP) Expressed in atrial and ventricular tissue Expressed in vascular endothelial cells Expressed in the atria and central nervous system "Measurable in plasma Measurable in plasma t_{1/2} in circulation = t₂ in circulation = t_{1/2} in circulation = ~2 mins ~20 mins ~3 mins Vasorelaxation Vasorelaxation Vasorelaxation † Diuresis/natriuresis † Diuresis/natriuresis More potent dilation of veins than ANP and Proliferation I RAAS activation (including aldosterone) Bone growth regulation Hypertrophy I Sympathetic tone ↑ RBF and GFR I Proliferation RAAS activation (including aldosterone) Myocardial relaxation I Hypertrophy I Fibrosis Sympathetic tone Lipid mobilization, metabolic effects Inflammation Venous capacitance I Thrombosis † RBF and GFR Mvocardial relaxation Lipid mobilization, metabolic effects

vin et al. N Engl J Med 1998;339;321–8; Gardner et al. Hypertension 2007;49:419–26;

• Pandey. J Am Soc Hypertens 2008;2:210–16; Von Lueder et al. Pharmacol Ther 2014;144:41–9; Potter. FEBS J 2011;278:1808–17; Lumsden et al. Curr Pharm Des 2010;16:4080-8;

.....

.

.

.

....

Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction

James L., Januzzi Jr, MD; Margaret F. Prescott, PhD; Javed Butler, MD, MPH; MBA, G. Michael Felher, MD, MHS; Alan S. Maiset, MD; Kevin McCague, MA; Alexander Camacho, PhD: Brana L. PHa, MD, MPH; Ricardo A. Rocha, MD, Amil M. Shah, MD, MPH; Kristin M. Williamson, PharmD: Scott D. Solomon, MD.

In patients with heart failure and reduced ejection fraction (HFrEF), treatment with sacubitril-valsartan reduces N-terminal pro-b-type natriuretic peptide (NT-proBNP) concentrations. The effect of sacubitril-valsartan on cardiac remodeling is uncertain.

OBJECTIVE To determine whether NT groBMP changes in patients with HFrEF treated with sacubitril-valsartan correlate with changes in measures of cardiac volume and function.

DESIGN, SETTING, AND PARTICIPANTS. Prospective, 12-month, single-group, open-label study. of patients with HFrEF enrolled in 78 outpatient sites in the United States. Sacubitril valsartan was initiated and the dose adjusted. Enrollment commenced on October 25, 2016, and follow-up was completed on October 22, 2018.

EXPOSURES NT proBNP concentrations among patients treated with sacubitril-valuartan.

MAIN OUTCOMES AND MEASURES. The primary outcome was the correlation between changes in log,-NT-proBNP concentrations and left ventricular (LV) EF, LV end-diastolic volume index (LVEDVI), LV end-systolic volume index (LVESVI), left atrial volume index (LAVI), and ratio of early transmitral Doppler velocity/early diastolic annular velocity (E/e⁻) at 12 months.

8693.15 Among 794 patients (mean age, 65.1 years, 226 women [28.5%]; mean LVEF = 28.2%), 654 (82.4%) completed the study. The median NT-proBNP concentration at baseline was 816 pg/mi, (interquartile range (IQR), 332-1822) and 455 pg/mi, (IQR, 153-1090) at 12 months (difference, P < .001). At 12 months, the change in log, -NT-proENP concentration was correlated with changes in LVEF (r = -0.381 (IQR, -0.448 to -0.310); P < .001), LVEDW (r = 0.320 (FQR, 0.246 to 0.391), P < .001), LVESW (r = 0.405 (FQR, 0.335) to 0.4701, P < .001; LAVI (r = 0.263 BOR, 0.186 to 0.3381; P < .001), and EW (r = 0.269) (IQR, 0.182 to 0.353); P < .001). At 12 months, LVEF increased from 28.2% to 37.8% (difference, 9.4% [95% CI, 8.8% to 9.9%), P < .001), while LVEDVI decreased from 86.93 to 74.15 mL/m³ (difference, -12.25 mL/m³ (ICR, -12.92 to -11.58); P < .DOI) and LVESVI decreased from 61.68 to 45.46 mL/m2 (difference, -15.29 mL/m2 (95% Ct. -16.03 to -14.55); P < ,001). LAVI and E/e' ratio also decreased significantly. The most frequent adverse events. were hypotension (17,6%), dizziness (16,8%), hyperkalemia (13,2%), and worsening kidney

CONCLUSIONS AND RELEVANCE In this exploratory study of patients with HFrEF treated with sacubitril valsartan, reduction in NT proBNP concentration was weakly yet significantly correlated with improvements in markers of cardiac volume and function at 12 months. The observed reverse-cardiac remodeling may provide a mechanistic explanation for the effects of sacubitril-valuartan in patients with HFrEF.

TRIAL REGISTRATION ClinicalTrials gov/identifier. NCT02887/83

2006 2016 32205 3085 8095, dia 10.000/junu.2016/2007 Published online September 2, 2019.

© 2019 American Medical Association. All rights reserved.

Supplemental content

Author Affiliations Interuchments Seneral Hospital, Boston Conscot, Camacholi (bains institute for Clinical) Smage's Region Manachasets. (Januard) Movarity Pharmacouliculy and Hampwer, Name Jersey (Proscott, McCapar, Forba, Williamson). Driversity of Mississippi Medical Center, Jackson Stutler's Duke University Medical Center and Duke Clinical beautify teathure. Durham North Carolina-Selliar), University of California, San Diego School of Medicine, San Diego (Matsel), Detroit (Pfss), trigham and Women's respital, boston, Massachusetts C\$NA, Solomoni.

Group Information The PECUT HE investigators are listed at the end of the article.

Corresponding Author: James L. WHILE R. M.D. Massachusetts. General Hospital, Vankey 1554 SS FINANCE, BOHROO, MIR COTTAG Uanumijpatnerungli.

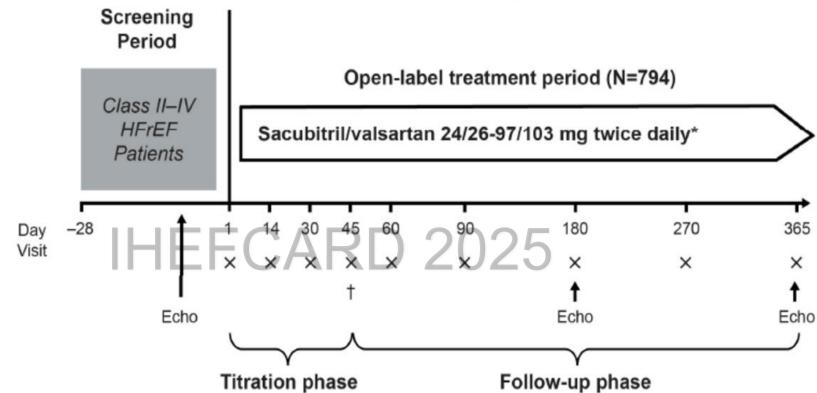
JAMA

James L. Januzzi Jr, MD; Margaret F. Prescott, PhD; Javed Butler, MD. MPH. MBA; G. Michael Felker, MD, MHS; Alan S. Maisel, MD; Kevin McCaque, MA; Alexander Camacho, PhD; Ileana L. Piña, MD, MPH; Ricardo A. Rocha, MD; Amil M. Shah, MD, MPH; Kristin M. Williamson, PharmD; Scott D. Solomon, MD; PROVE-HF Investigators

Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced **Ejection Fraction**

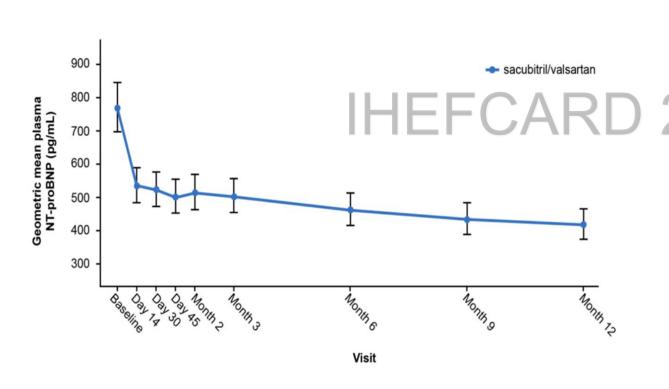
Published September 2, 2019

Available at jama.com



DIOGRAPHY AT CULAR

- **Blood samples** (x) were obtained at **each study visit** for NT-proBNP measurement
- An echocardiogram was performed at baseline, 6- and 12-months, and interpreted by a core lab in a clinically and temporally blinded fashion

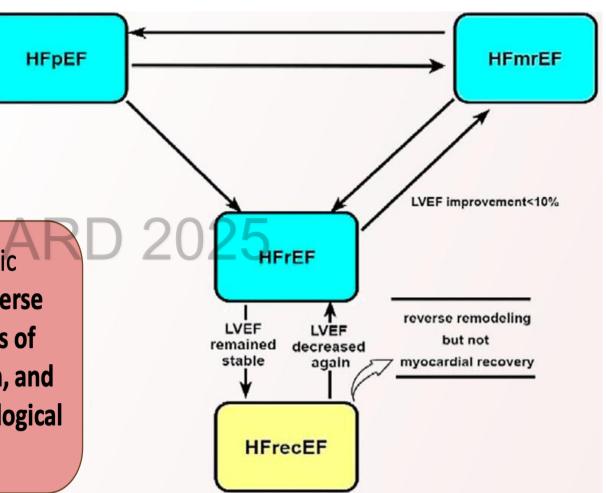


NT-proBNP concentrations

Rapid and significant decrease in NT-proBNP, with the majority occurring in the first 2 weeks after Sac/Val . administration

Time point	N	Median NT-proBNP (25th, 75th percentile), pg/mL
Baseline	760	816 (332, 1822)
Day 14	754	528 (226, 1378)
Day 30	740	546 (211, 1321)
Day 45	734	514 (192, 1297)
Month 2	721	535 (210, 1299)
Month 3	719	488 (211, 1315)
Month 6	699	473 (179, 1163)
Month 9	659	444 (170, 1153)
Month 12	638	455 (153, 1090)

Withdrawal therapy what's the effect



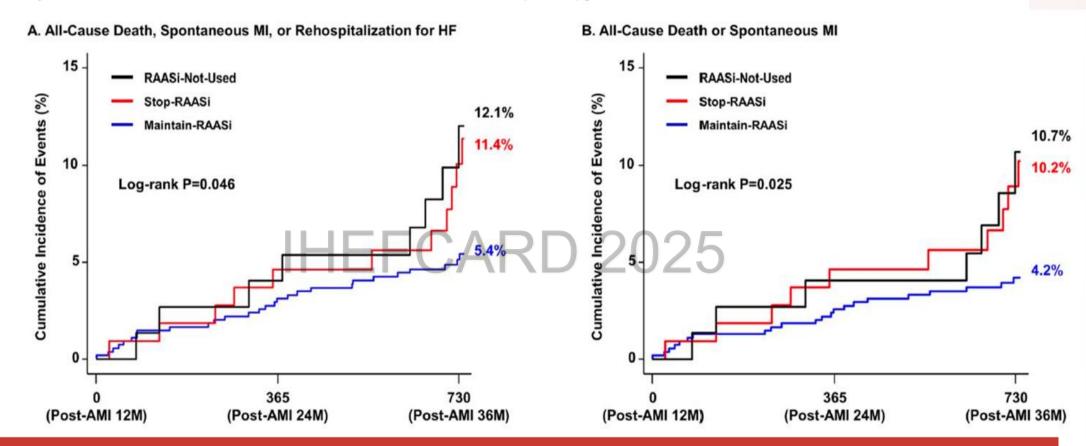
Heart failure with recovered ejection fraction: Current understanding and future prospects

Xi Chen, MD and Meifang Wu, MD

Department of Cardiology, Affiliated Hospital of Putian University, Fujian, China

Furthermore, it is revealed from a microscopic perspective that even if partial or complete reverse remodeling occurs, the morphological changes of cardiomyocytes, extracellular matrix deposition, and abnormal transcription and expression of pathological genes still exist.

Discontinuation RAASi



A. LV Ejection Fraction, %

B. NT-proBNP, pg/mL

In post-AMI HF patients with restored LV systolic function, discontinuation of RAASi was associated with a significantly increased risk of all-cause death, MI, or rehospitalization for HF. This result strongly suggests the importance of continuation of RAASi in post-AMI patients with HFrEF, even after recovery of LVEF.

Scientific reports (2023) 13:3539

Main changes in clinical and imaging parameters observed in patients who withdrew from therapy in TRED-HF

The TRED-HF trial confirmed therapy 1 month ↑ HR by 7.6bpm that these patients are often in remission while the path to ↑ SBP by 6.6mmHg 2 months Withdrawal from complete ↑ DBP by 5.8mmHg recovery is less clear **↓** LVEF by 4.2% ↑ LVEDVi by 3.9ml/m² 4 months ↑ LVMi by 5.1g/m² **↓** GLS by 2.7% 6 months ↑ LV cell mass by 4g/m² ↑ LV matrix mass by 1.7g/m²

> Current Heart Failure Reports (2023) 20:542-554 https://doi.org/10.1007/s11897-023-00636-8

Chronic drug treatment in PPCM after delivery

Drug	Persisting heart failure and absence of complete LV recovery	Complete and sustained recovery (LVEF > 55% and NYHA functional class I)
Beta-blocker	Essential for all patients in standard or maximally tolerated dosages	Continue all drugs (beta-blocker, ACEI/ARB/ARNI, MRA) for at least 12–24 months after full recovery, individual approach/discuss with patient. Discontinue stepwise and monitor symptoms and LV function:
		1. MRA
		2. ACEI/ARB/ARNI
	IHEECAPD 20	3. Beta-blocker
ACEI	Essential for all patients in standard or maximally tolerated dosages	20
ARB	Recommended in patients who do not tolerate ACEI	
ARNI	Recommended in patients with LVEF < 40% who are symptomatic	
	despite maximal dosages of beta-blocker, ACEI/ARB and MRA	
MRA	Recommended in patients with LVEF < 40%, preferably eplerenone due to less hormonal side effects and less blood pressure reduction compared to spironolactone	
Ivabradine	Recommended in patients in sinus rhythm with a persisting heart rate > 70 b.p.m. at rest despite maximal tolerated beta-blocker up-titration	Discontinue if heart rate < 50 b.p.m. and/or in case of complete recovery
Diuretics	Recommended in patients with fluid overload	Taper dose/discontinue if no signs of fluid overload, maintain only if part of antihypertensive therapy

K Sliwa, et al. ESC Position paper on PPCM, European Journal of Heart Failure (2019) 21, 827–843

Heart failure with improved ejection fraction: HFimpEF

Definition: initial LVEF <40% and ↑LVEF >40% by ≥10%

Rate: 10-40%

Ischaemic aetiology

Myocardial revascularisation: CABG > PCI

Dilated CMP / Myocarditis

- Spontaneous recovery following myocarditis
- Anti-inflammatory treatment
- Specific treatment, e.g. enzyme substitution

Valvular heart disease

Surgical valve replacement or repair

Arrhythmia-induced **CMP**

- Rate control Rhythm control:
 - · AAD

Chemotherapy cardiotoxicity

- Drug cessation
- Cardioprotective treatment

Stress-induced **CMP**

- Spontaneous recovery of systolic function
- Beta-blockers

Hyperthyroidisminduced CMP

- Thyreostatic drugs
- Propranolol
- Radioiodine ablation

Maintenance of optimal medical therapy: ACEI/ARB or ARNI + beta-blocker + MRA + SGLT2i ± ivabradine

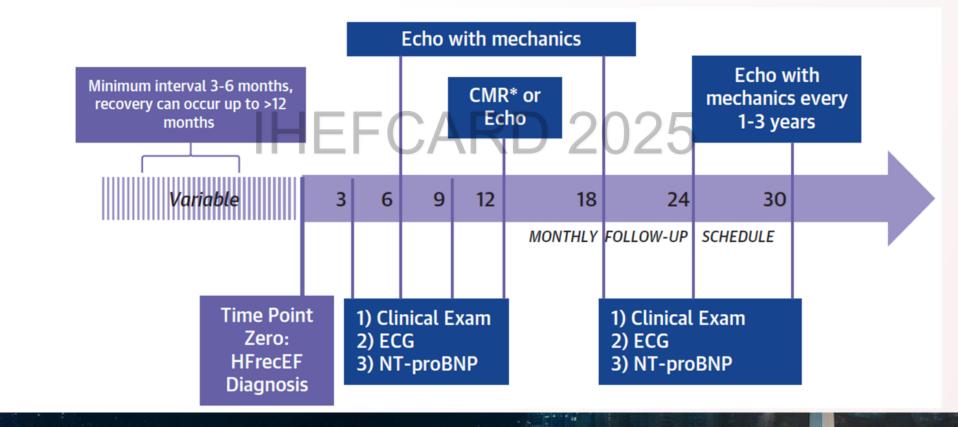
Continuation of maintenance dose of oral diuretic

ICD/CRT replacement despite LVEF improvement / delay of ICD implantation for 3-6 months in primary prevention, particularly in non-ischaemic HF

Medical consult, physical examination ECG, TTE, natriuretic peptides every 6 months during first 12-18 months of improvement

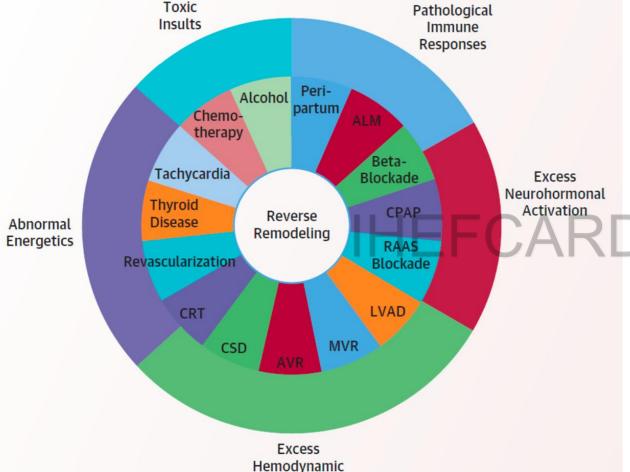
Genetic profiling: tTTN mutations-good response to GDMT; LMNA, SCN5A, FLNC, DSP-high risk of SCD

Wybraniec, MT et al. Int. J. Environ. Res. Public Health 2022, 19, 14400. https://doi.org/10.3390/ijerph192114400



Sample Follow-Up and Clinical Testing Schedule for an HFrecEF Patient Deemed High-Risk for Recurrence of HF

JACC Scientific Expert Panel, 2020 https://doi.org/10.1016/j.jacc.2020.05.075

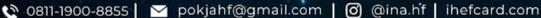


HIGHLIGHTS

- This consensus document was created because there are no guidelines for the management of patients with HFrecEF.
- A working definition of HFrecEF that is consistent with the majority of studies in the literature includes the following: 1) documentation of a decreased LVEF <40% at baseline; 2) ≥10% absolute improvement in LVEF; and 3) a second measurement of LVEF >40%.
- Guideline-directed medical and device therapy for patients with HFrecEF should be continued indefinitely until the biology and clinical epidemiology of HFrecEF is better understood.
- HFrecEF patients should have close clinical follow-up due to the high risk of heart failure relapse.

JACC Scientific Expert Panel, 2020 https://doi.org/10.1016/j.jacc.2020.05.075

Load



Conclusion

- Cardiac adverse remodeling is associated with the development and progression of ventricular dysfunction, arrhythmias and poor prognosis
- The most important predictors of cardiac reverse remodeling were female sex, non-ischemic etiology, narrower QRS width, better kidney function and smaller diameter of the left ventricle and left atrium
- Reverse remodeling may lead to improve myocardial function and, in some patients, to myocardial remission and myocardial recovery, but major abnormalities persist at the molecular level contributing to an elevated risk ofcardiovascular events
- The earlier the remodeling changes are altered with the use of guideline-directed medical therapy, devices, and with available surgical options, thegreater is the chance of reverse remodeling of LV morphology and architectural changes

THANK YOU

LV ejection fraction (LVEF)

- ◆ 2D (biplane method of discs = modified Simpson's rules) or 3D (to be used if good image quality)
- LVEF = $((LVEDV LVESV)/LEDV) \times 100\%$
- LVEF is not significantly related to gender, age, and BSA
- Reference upper 2DE limits
 - Men: LVEDV = 74 ml/m^2 , LVESV = 31 ml/m^2
 - Women: LVEDV = 61 ml/m², LVESV = 24 ml/m²
 - LVEF = $63 \pm 5\%$; range 53-73% above 20 years
- ◆ A value of LVEF < 53% is suggestive of abnormal LV systolic function

Global longitudinal strain (GLS) (Fig. 4.1.7)

- ◆ The most commonly used strain-based measure of LV global systolic function
- Obtained often with speckle tracking, less frequently with Doppler tissue imaging (DTI)

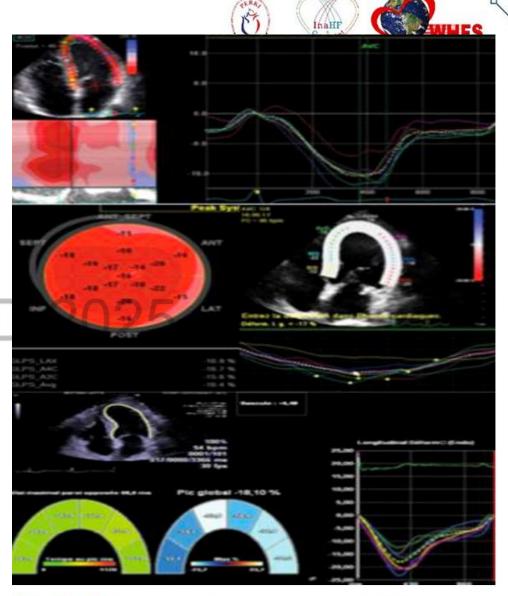


Fig. 4.1.7 Examples of measurement of GLS using different software

↓ E-wave deceleration time

European Journal of Heart Failure (2024) 26, 1454-1479 doi:10.1002/ejhf.3264

REVIEW ARTICLE

Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on **Myocardial Function**

Inês Falcão-Pires¹*, Ana Filipa Ferreira^{1†}, Fábio Trindade^{1†}, Luc Bertrand^{2,3}, Michele Ciccarelli⁴, Valeria Visco⁴, Dana Dawson⁵, Nazha Hamdani^{6,7,8,9}, Linda W. Van Laake¹⁰, Frank Lezoualc'h¹¹, Wolfgang A. Linke¹², Ida G Lunde^{13,14}, Peter P. Rainer^{15,16,17}, Mahmoud Abdellatif^{15,16}, Jolanda Van der Velden¹⁸, Nicola Cosentino 19,20, Alessia Paldino 21,22, Giulio Pompilio 19,23, Serena Zacchigna^{21,22}, Stephane Heymans^{24,25}, Thomas Thum²⁶, and Carlo Gabriele Tocchetti²⁷

Beta-blockers	β -adrenergic receptor inhibition	HFrEF	↓ LVM
	(inotropic/chronotropic	Hypertension	↓ Hypertrophy
	effects, blood pressure	STEMI	↓ LVEDV and LVESV
	reduction, depending on	Ischaemic and	↑ Diastolic function
	selectivity)	non-ischaemic	↑ Ejection fraction
		cardiomyopathy	↑ Exercise capacity
		Atrial fibrillation	↑ Diastolic coronary blood flow time
		(ventricular rate	↑ Myocardial oxygen supply/demand
		control)	↓ Adverse events
			↓ Mortality risk
Mineralocorticoid receptor	Aldosterone antagonism at its	HFrEF	↓ LVMI
antagonists	receptors	HFpEF	
		STEMI	
		Hypertension (resistant)	
Sodium-glucose	Reduction of the reabsorption of	HFrEF	↓ NT-proBNP
cotransporter 2 inhibitors	filtered glucose (glycaemia	HFpEF	↑ LVEF
	control) and		\uparrow Diastolic function (\downarrow E/e')
	sodium + anti-inflammatory,		↓ LVESV, LVEDV
	antioxidative effects,		↓ LVM
	endothelial function		↓ LAVI

improvement, modulation of

neurohormonal pathways