

Managing Heart Failure Patients in JKN Era: How to Stay Rational

Yuke Sarastri

Department of Cardiology and Cardiovascular Medicine Faculty of Medicine, Universitas Sumatera Utara

Introduction

- Heart failure (HF) represents a complex clinical syndrome affecting multiple organs and systems of the body
- It is a global public health concern because of its high prevalence, mortality, and medical cost

 Asia, especially Indonesia, diverse in ethnicities, and complex health care systems, faces challenges in the prevention and management of HF

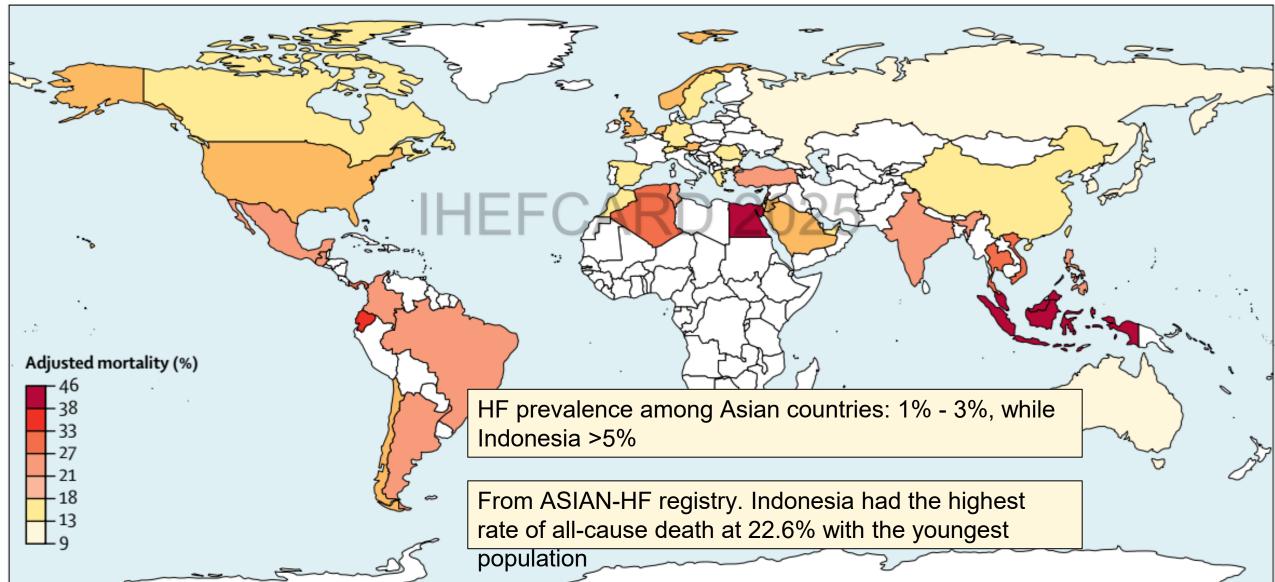
Indonesia

- 262 millions inhabitants
- 17,744 islands
- Middle-income
- · Diversity in local living styles, health beliefs, human development, community participation

Unique challenges for health systems and universal health coverage (UHC)

Up to 30% of death or readmissions after discharge within 3 months

of patients diagnosed with heart failure will die within 5 years



Prevalence

TABLE 1 Age-Adjusted Rates of Prevalence for HF Among 5 Asian Regions From GBD Data

	ASRs of Prevalence, % (95% UI)		ASRs of Prevalence per 100,0	ASRs of Prevalence per 100,000 Population and 95% UI		
Location	1990	2019	1990	2019		
High-income Asia Pacific	0.61 (0.50-0.75)	0.49 (0.42-0.56)	571.60 (471.91-698.96)	445.28 (384.66-514.55)		
Singapore	0.53 (0.43-0.65)	0.36 (0.29-0.44)	490.72 (398.39-602.78)	328.71 (268.09-402.06)		
Japan	0.65 (0.54-0.79)	0.53 (0.46-0.60)	603.27 (499.89-735.11)	481.00 (418.37-550.97)		
Brunei Darussalam	0.47 (0.38-0.59)	0.41 (0.34-0.51)	443.21 (357.85-551.32)	382.15 (310.24-472.02)		
Republic of Korea	0.41 (0.33-0.51)	0.37 (0.29-0.46)	385.12 (309.65-483.11)	339.30 (270.67-419.87)		
East Asia	1.10 (0.90-1.37)	1.09 (0.89-1.34)	1,060.30 (863.37-1,310.49)	1,014.06 (830.18-1,252.95)		
China	1.12 (0.92-1.39)	1.11 (0.90-1.36)	1,079.37 (880.67-1,335.51)	1,032.84 (846.57-1,277.46)		
Democratic People's Republic of Korea	0.58 (0.46-0.75)	0.58 (0.46-0.75)	560.87 (444.58-723.28)	549.64 (432.50-713.60)		
Southeast Asia	0.74 (0.59-0.94)	0.79 (0.63-0.98)	729.15 (581.66-919.89)	755.95 (604.89-946.23)		
Sri Lanka From 100	2010	the nerce	otago chango i	in tho 0-950.23)		
Malaysia FIOIII 133	90 - 2019	, tile percei	ntage change i	6-1045.58)		
Thailand age-stan	dardized r	rate of prev	alence differed	57-823.55)		
			nesia showed t			
			iesia siloweu i	116 42-818.38)		
Seychelles largest in	icreases (7.83%)		2-955.05)		
Mauritius	•	•		4-893.83)		
Viet Nam	0.65 (0.50-0.85)	0.70 (0.56-0.88)	638.25 (490.27-840.14)	665.42 (536.62-839.93)		
Myanmar	0.64 (0.49-0.82)	0.62 (0.47-0.80)	629.35 (485.63-811.73)	601.42 (460.08-780.42)		
Cambodia	0.57 (0.44-0.75)	0.59 (0.45-0.76)	560.61 (430.86-734.26)	568.26 (434.83-741.38)		
Philippines	0.75 (0.60-0.95)	0.82 (0.66-1.03)	731.70 (585.36-924.78)	787.31 (629.80-990.66)		
Indonesia	0.85 (0.68-1.07)	0.94 (0.75-1.19)	835.45 (666.27-1,050.39)	900.90 (717.73-1,138.87)		
Lao People's Democratic Republic	0.56 (0.43-0.73)	0.58 (0.45-0.76)	549.15 (422.46-713.94)	560.53 (434.91-724.73)		
South Asia	0.38 (0.31-0.48)	0.40 (0.32-0.50)	374.17 (302.18-470.48)	389.97 (314.38-487.19)		
Bhutan	0.25 (0.20-0.33)	0.26 (0.21-0.34)	251.56 (195.69-327.52)	255.54 (199.01-330.03)		
Bangladesh	0.26 (0.20-0.34)	0.28 (0.22-0.37)	259.89 (200.46-337.34)	275.00 (213.50-355.43)		
India	0.40 (0.32-0.50)	0.42 (0.34-0.52)	390.14 (315.11-487.72)	406.20 (328.33-505.76)		
Nepal	0.23 (0.18-0.30)	0.22 (0.17-0.29)	226.08 (174.66-294.04)	211.86 (164.68-276.13)		
Pakistan	0.40 (0.32-0.51)	0.42 (0.34-0.53)	396.82 (319.37-496.95)	405.12 (327.72-504.86)		
::::::	::::					

....

TABLE 4 Characteristics and 1-Year Mortality of Asian Countries in the REPORT-HF Study

Country	Regions (as the Study Design)	Income Classification	No. of Patients Discharged Alive	Age, y Median (IQR)	Women, %	Crude Mortality Rate at 1 y
Indonesia	Southeast Asia	Lower middle income	337	56 (49-63)	38.6	34.1
Malaysia	Western Pacific	Upper middle income	134	54 (46-63)	20.9	27.6
Vietnam	Western Pacific	Lower middle income	182	66 (57-78)	46.7	25.8
Thailand	Southeast Asia	Upper middle income	472	65 (57-75.5)	48.7	20.6
India	Southeast Asia	Lower middle income	1,483	62 (53-70)	32.0	17.4
China	Western Pacific	Upper middle income	1,436	67 (57-77)	36.1	16.9
Philippines	Western Pacific	Lower middle income	508	61 (50.5-71)	41.7	16.1
Japan	Western Pacific	High income	108	79 (70-85)	40.7	11.1
Korea	Western Pacific	High income	558	73 (62-79)	50.5	10.9

.

Etiology

Table 1 Prevalence of heart failure (HF), demographic characteristics of patients and etiology in 9 Asian countries or regions, and Europe and the USA [2,3,20,22–29,31–34].

Prevalence or characteristic	Asia							Europe	USA		
	Hong Kong	Indonesia	Malaysia	Philippines	Singapore	South Korea	Taiwan	Thailand	Vietnam		
Prevalence of HF	2%-3%ª	5%	(SE	1%-2%	ia i	0.6%	6%	0.4%	₹3	1%-2%	2%
Demographic characteristics of HF patients											
Male	45%	66%	75%	57%	64%	55%	72%	_	59%	61%	53%
Female	55%	34%	26%	43%	36%	45%	28%	-	41%	39%	47%
Mean age at admission (years)	76.8	57.8	61.8	60	66.6	69	64	67	59	70	74
Cardiovascular risk factors				(ベレ					
Ischemic heart disease	29%	35%	68%	52%	37%	37%	44%	45%	32%	54%	46%
Valvular/rheumatic heart disease	6%	18%	29%	20%	10 -2 0	14%	8%	19%	18%	-	-
Cardiomyopathy (non-ischemic)	1%	2%	28%	11%	11770	21%	34%	14%	21%	-	77
Hypertensive heart disease	70%	8%	2%	6%	82	4%	7%	12%	21%	_	23%
Other causes ^b		2%	5%	7%	-	11%	7%	-	- 2	-	=
Hypertension		33%	75%	64%	69%		33%	31%	- -0	63%	76%
Current smoking	13%	28%	9%	54%	45%		24%	7%	31%	_	_
Diabetes mellitus	36%	37%	67%	41%	55%		43%	47%	223	33%	43%
Dyslipidemia		31%	52%	38%	65%		24%	51%	5%	-	44%
Overweight		47%	25%	21%	100		(0)20	100 A	7	-	-
Renal disease		24%	31%	4%	82		31%	19%	5%	17%	50%
Atrial fibrillation		16%	24%	100	21%		26%	24%	22%	39%	31%
Coronary heart disease		35%	73%	52%	49%		43%	47%	=0	54%	50%
Cerebrovascular disease		2%	7%	0%	15%		9%	12%	_	_	-
COPD		18%	13%	2%	12%		12%	8% ^c	3%	19%	4

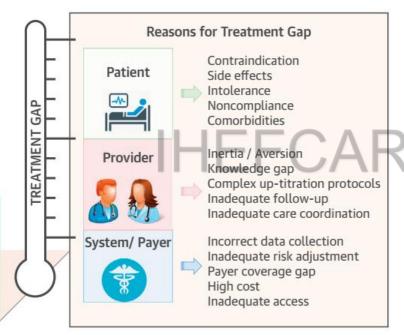
- Ischemic Heart Disease (35%)
 - Valvular/RHD (18%)
 - HHD (8%)
 - Cardiomyopath y non-ischemic (2%)

Why is there treatment gap?

Figure 1: Regional variation in uptake

ACE=angiotensin-converting enzyme. ARB=angiotensin receptor blockers. MRA=mineralocorticoid receptor antagonists.

- Highest uptake for ACE inhibitors or ARBs.
- Lowest uptake for β blockers and MRAs.
- The gaps in administration of such therapy were monotherapy instead of combined therapy.
- Increasing achieved doses of ACEi or ARBs and β blockers were associated with improved outcomes


B

Awareness / Education

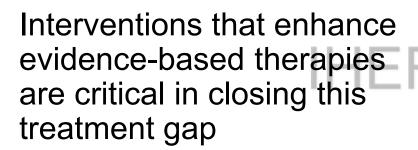
Guidelines

Cost / Coverage Aligned with Care Benefit

Interventions Aligned with Evidence-Based Performance Measures

Clinical inertia in the treatment of heart failure: a major issue to tackle

Caroline Verhestraeten 1 · Ward A. Heggermont 2,3 · Michael Maris 1


	QUALIFY [20]	ESC HF Long-term Registry [22]	TSOC-HFrEF [24]	
ACEi/ARB	Worsening renal function	Worsening renal function	Worsening renal function	
	Hypotension	Hypotension		
	Cough			
) 21	025		Older age	
вв	Worsening of asthma and COPD		Worsening of asthma and COPD	
	Hypotension	Hypotension		
	Bradycardia			
	Fatigue			
		Bronchospasm		
			Older age	
MRA	Hyperkalemia	Hyperkalemia		
	Renal dysfunction	Renal dysfunction	Renal dysfunction	
			Older age	

Bozkurt et al. JACC Vol. 73, No.19, 2019

.

Potential solutions

Healthcare system

- · Learning health systems
- Performance improvement registries
- HF disease management programs, telehealth
- Time to GRMT performance measures

Clinician-level

- Simultaneous GRMT initiation protocols
- GRMT team consults and navigators
- In-hospital initiation of GRMT
- Real-time performance feedback
- Digital health tools

Patient-level

- · Enhanced education and shared decision making
- Co-payment assistance program
- Medications to bedside program
- Patient engagement intervention (EPIC-HF)
- Digital health GRMT adherence tracking

Brownell NK, et al. Eur Heart J. 2023

.....

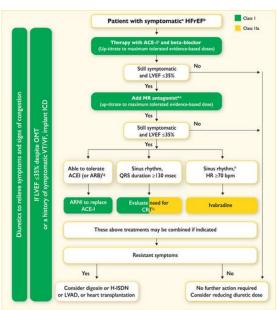
.

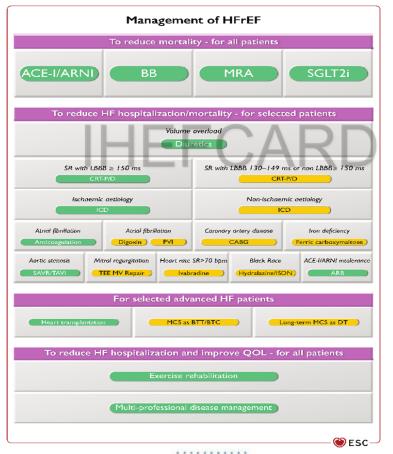
.

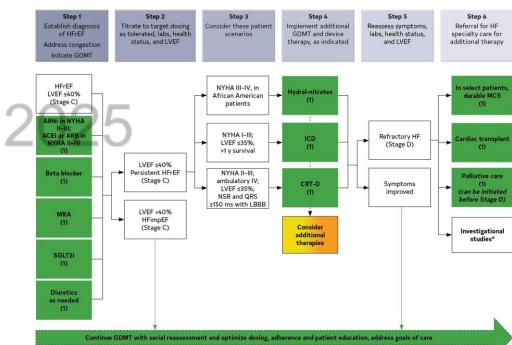
.

.

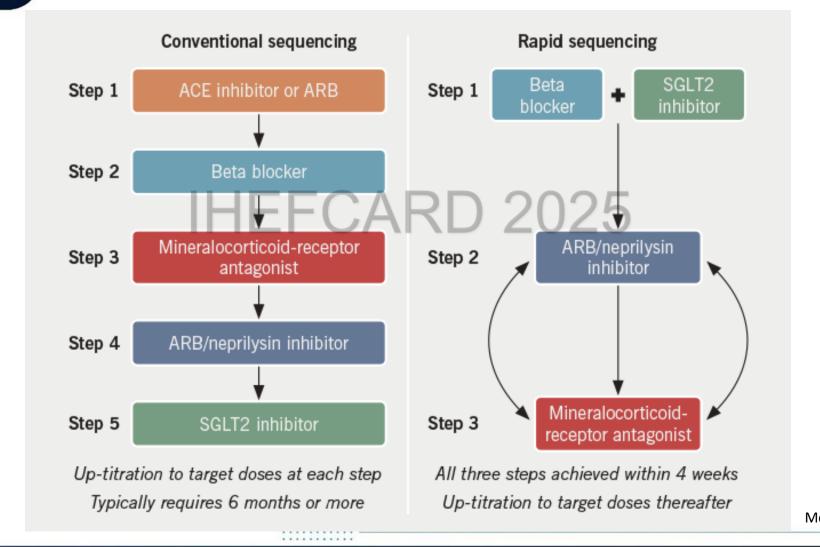
Evolving management of HFrEF





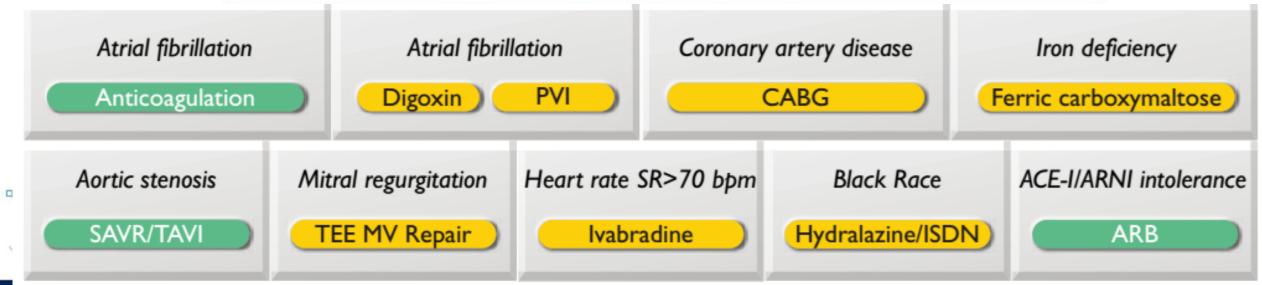


2022


Evolving management of HFrEF

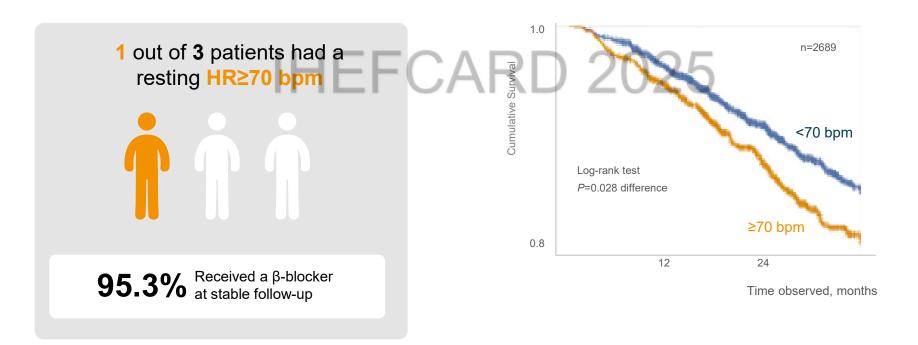
Principles of sequencing HF therapy

- 1. The efficacy of each foundation drug class is independent of treatment with other drug classes thus the priority of drugs can be determined by considerations of relative efficacy, safety and ease-of-use
- 2. Low starting doses of each foundational drug has a meaningful therapeutic benefit
- 3. The most important is the 4 pillars of HF therapy were started within 4 weeks as treatment act to reduce morbidity and mortality within 4 weeks of initiation



How to optimize? InaHF When to think of 2nd line therapy?

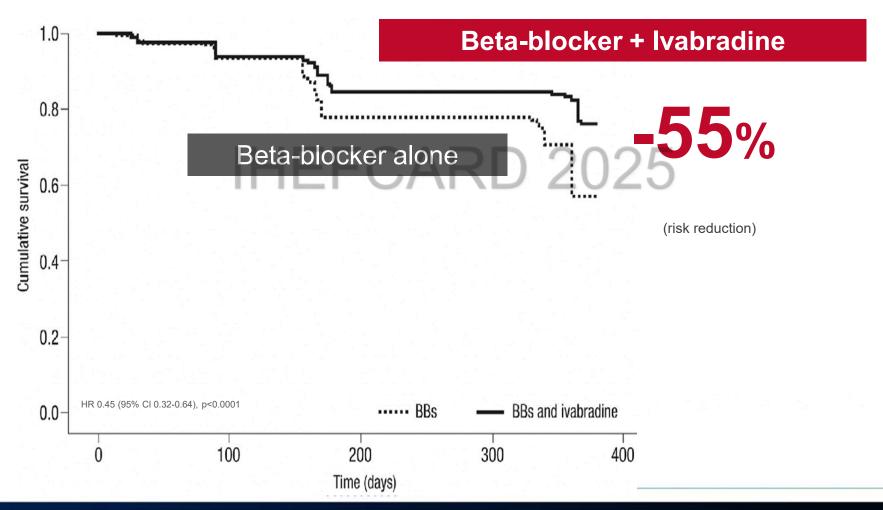
Management of HFrEF



Despite wide use of beta-blockers, heart rate remains elevated even in well-managed patients

Eriksen-Volnes T et al. Biomed Hub. 2020;5(1):9-18

Not All Patients Are the Same The Importance of Individualized **Heart Failure Treatment**

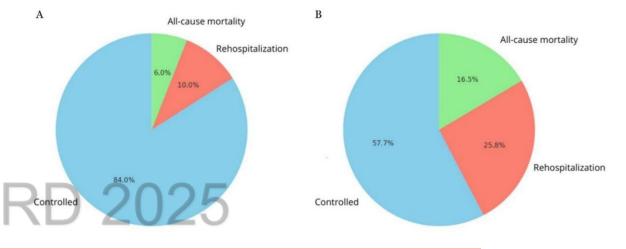


Strategy in patients with elevated heart rate

Lower heart rate is associated with improved survival in HFrEF and sinus rhythm, and the most favorable outcome is observed with a heart rate around 60 bpm

Earlier initiation of Ivabradine with BB reduced all cause mortality or HF re-hospitalization

All cause mortality or HF re-hospitalization



Data from Adam Malik Hospital Medan

A prospective cohort study was conducted from 2023 to 2024, to evaluate the impact of comprehensive GDMT implementation (the 4 pillars) on rehospitalization and mortality rates in HFrEF patients.

41 (42.3%)

Complete GDMT-encompasses the 4 pillars class-significantly improves clinical stability and reduce mortality in HFrEF patients. Optimizing implementation should be prioritized in HF management, particularly in resource-limited settings

GDMT tidak

lengkap

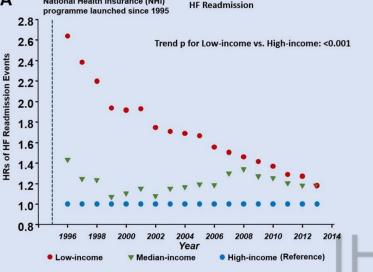
56 (57.7%)

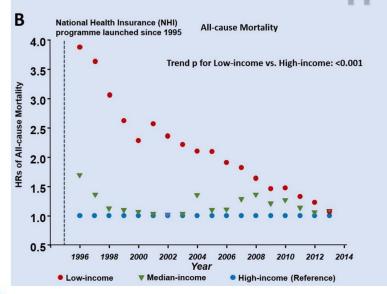
3.844 (1.632-9.053)

<0.001*

Nilai Odds Ratio

dengan 95% CI


ete (B) Guideline-Directed


■ Ya
■ Tidak

42,20% 58,50

57,80%

Temporal Trends of HF Readmission and All-cause Mortality Incidence by Income Categories over Years (1996 - 2013)

Original research

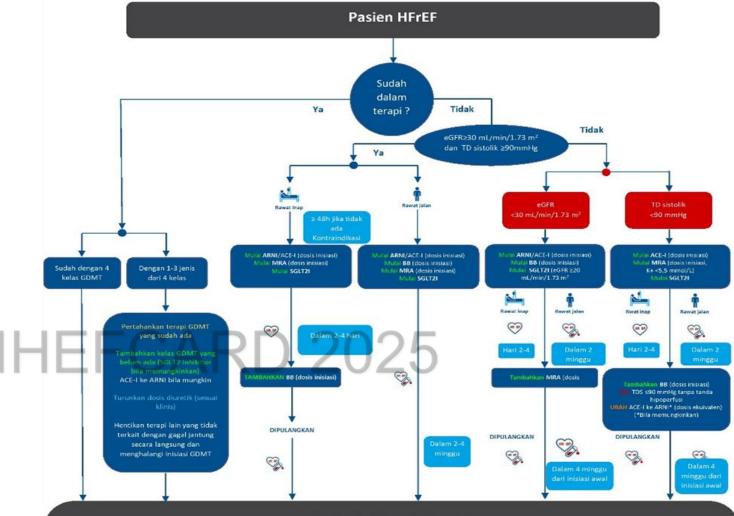
Income level and outcomes in patients with heart failure with universal health coverage

Chung-Lieh Hung , ^{1,2,3} Tze-Fan Chao, ^{4,5} Cheng-Huang Su, ^{1,2,3} Jo-Nan Liao, ^{4,5} Kuo-Tzu Sung, ^{1,2,3} Hung-I Yeh, ^{1,2,3} Chern-En Chiang ^{4,5,6,7}

Objective We aimed to investigate the influence of income level on guideline-directed medical therapy (GDMT) prescription rates and prognosis of patients with heart failure (HF) following implementation of a nationwide health insurance programme. Methods A total of 633 098 hospitalised patients with HF from 1996 to 2013 were identified from Taiwan National Health Insurance Research Database.

> **Conclusions** Low-income patients with HF had nearly a twofold increase in the risk of in-hospital mortality and postdischarge events compared with the highincome group, partly due to lower GDMT utilisation. The differences between postdischarge HF outcomes among various income groups appeared to mitigate over time following the implementation of nationwide universal health coverage.

....


....

.

in conjunction with: World Heart Failure Society

Congress 2025

TITRASI TERAPI GDMT

- Titrasi naik setiap 2-4 minggu sampai dengan dosis yang dapat ditoleransi pasien (lebih cepat lebih baik)
- Titrasi 1-2 jenis obat bersamaan (dapat dilakukan titrasi 3 jenis obat gagal jantung bersamaan pada pasien dengan fungsi ginjal baik dan perfusi baik).
- Sesuaikan dosis diuretik sesuai klinis.
- Evaluasi fungsi ginjal dan elektrolit setelah melakukan titrasi naik kelas obat (bila memungkinkan paling tidak dalam 4 minggu dilakukan evaluasi).
- Telemonitoring setelah titrasi naik obat (kolaborasi perawat gagal jantung).
- Pada usia ≥75 tahun, dosis inisiasi diberikan lebih rendah dan titrasi naik lebih perlahan.

So, how to manage HF patients in JKN era – how to stay rational?

Start all 4 classes of GDMT at diagnosis, and when to think 2nd line therapy

In-hospital initiation and rapid uptitration of GDMT following discharge (STRONG-HF)

Real time performance feedback (GWTG-HF, **IMPROVE-HF)**

HF disease management program

Enhanced patient's education and shared decision making

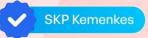
First Announcement

MECUP 2025 THE 16th Cardiovascular Event in Sumatera

Heart Health Frontier: Innovations through multidisciplinary collaboration

4th - 6th July 2025 | Adimulia Hotel, Medan

Symposium


Workshop

SmartMed Village

SmartCardio Cup

Call for Abstract

Recorded Case Session

