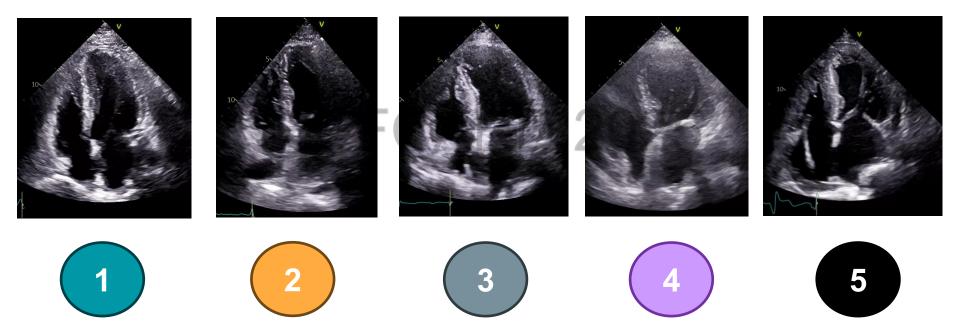


Exploring Hypertrophic Cardiomyopathy: What Should We Do?

Vebiona Kartini Prima Putri, MD, FIHA, FHFA Heart Failure Clinic Awal Bros Pekanbaru Hospital


June, 12-14 2025

Sheraton Grand Jakarta Gandaria City, Jakarta, Indonesia © 0811-1900-8855 | Scientific_ihefcard@inahfcarmet.org | © @ina.hf | ihefcard.com

Quick Poll: Do you think this is HCM?

Learning Objectives

Understand	Understand HCM definition and classification
Explore	Explore key genetic and pathophysiologic mechanisms
Review	Review diagnostic modalities
Summarize	Summarize evidence-based management strategies

What is Hypertrophic Cardiomyopathy?

Definition: Unexplained LV hypertrophy (in the absence of another cardiac, systemic, or metabolic disease)

Distinguish from secondary causes (HTN, AS)

Sarcomeric disease: primary myocardial disorder

Epidemiology of HCM

Male predominance in diagnosis, female symptom burden

ndonesian Working Group on Heart Failure

Cardiometabolic Diseas

Maron, B.J. et al. J Am Coll Cardiol. 2022;79(4):372–389

Estimated ~15-20 million affected worldwide

🔇 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🙆 @ina.hf | ihefcard.com

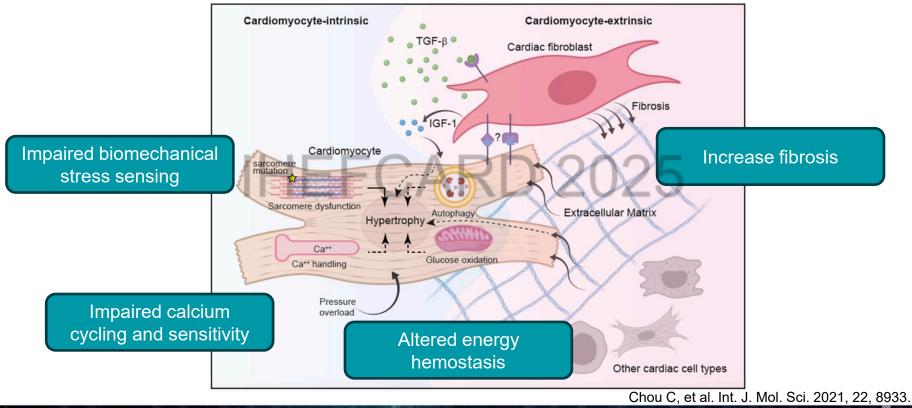
Types of HCM

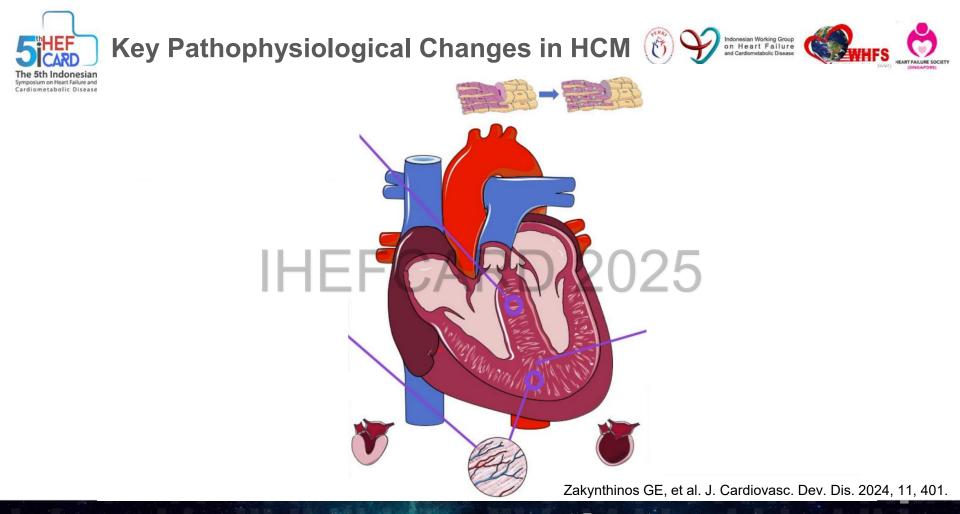
Obstructive HCM (oHCM) Non-obstructive HCM (nHCM) Apical and midventricular variants

Genotype-positive, phenotype-negative individuals

Genetic Basis of HCM

Autosomal dominant mutations

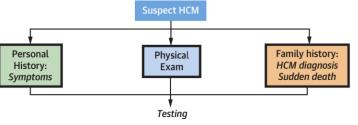

Common genes: MYH7, MYBPC3, TNNT2, TNNI3


Over 2,000
 known
 mutations

Pathophysiology of HCM

Dynamic LVOT obstruction

Complex interplay of:


- MV and subvalvular apparatus abnormalities
- septal hypertrophy
- narrowing of the LVOT
- steep and/or anteroseptal angulation of the outflow tract

Classification HCM on the basis of obstruction:

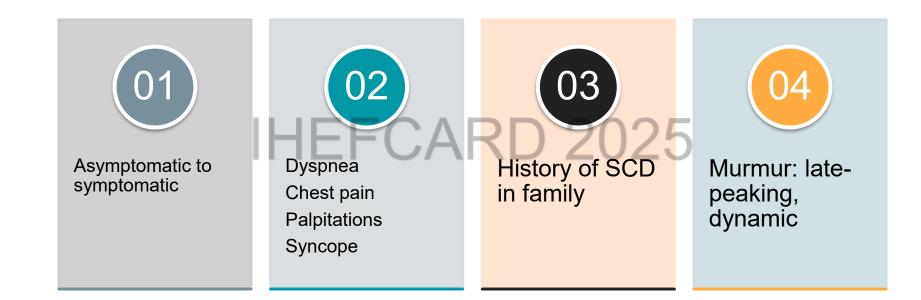
- resting obstruction (LVOT gradient ≥30 mm Hg)
- latent obstruction (<30 mmHg at rest, ≥30 mm Hg with provocation)
- non-obstructive (<30 mmHg at rest and with provocation)

Initial Clinical Evaluation and Testing Algorithm for Patients With or Suspected of Having Hypertrophic Cardiomyopathy

IHEFCARE

TABLE 1 Guide to Clinical Evaluation and Noninvasive Testing in HCM

Test	Initial Evaluation	Follow-Up
History taking and examination	+	Annual
Echocardiogram	+	Annual
Contrast CMR ^a	+	Every 3-5 y ^b
Stress (exercise) echocardiography ^c	+	Individualized
Ambulatory ECG ^d	+	1-3 y ^e
12-lead ECG	+	Annual


^aOptional in patients >65 years of age. ^bOr more frequently when there is concern for increased late gadolinium enhancement or development of suspected left ventricular apical aneurysm in adults, or increasing wall thickness in young patients. ^cWhen gradient at rest is absent or <30 mm Hg. ^dA 24- to 48-hour Holter or \geq 2-week wireless patch with continuous recording. ^eBased on presence or absence of arrhythmia.

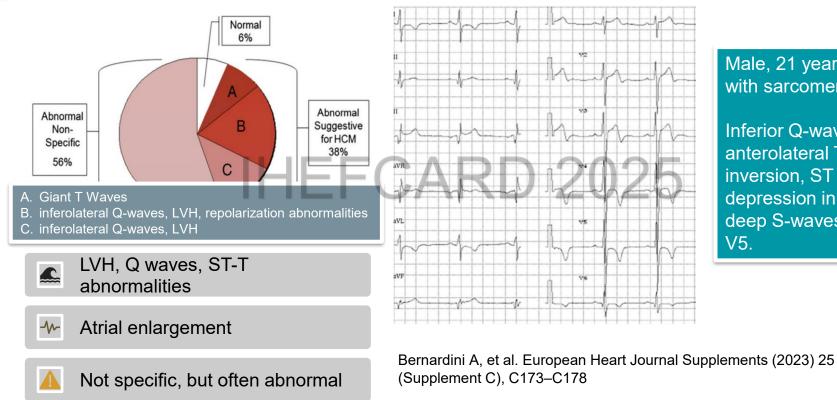
CMR = cardiac magnetic resonance; ECG = electrocardiography.

Maron, B.J. et al. J Am Coll Cardiol. 2022;79(4):372-389.

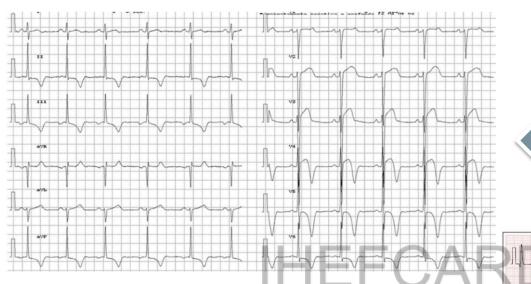
ECG in HCM

Male, 21 years old, with sarcomeric HCM.

Inferior Q-waves,


inversion, ST

V5.


anterolateral T-wave

depression in aVL,

deep S-waves in V3-

🕐 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🞯 @ina.hf | ihefcard.com

5 - 10 sec

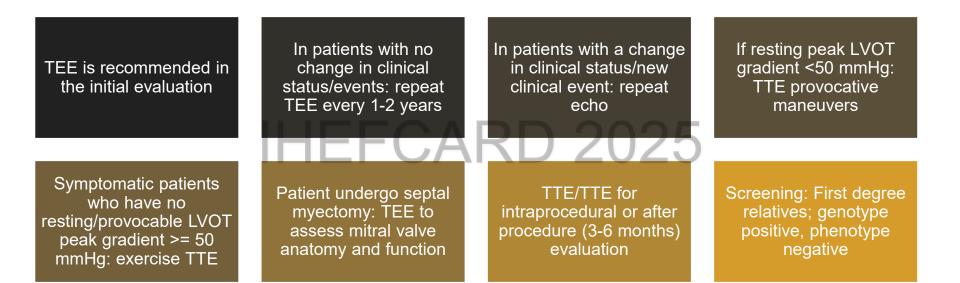
Male, 37 years old, with apical HCM. Giant negative T-waves in V4–V6 and inferior leads, ST segment elevation (pseudo-STEMI pattern) in V2–V3.

Il medico

Male, 47 years old, with obstructive HCM. QS pattern in V1–V2, marked ST elevation V2–V3, deep S-waves in V1–V4, ST depression in inferior leads, QTc prolongation

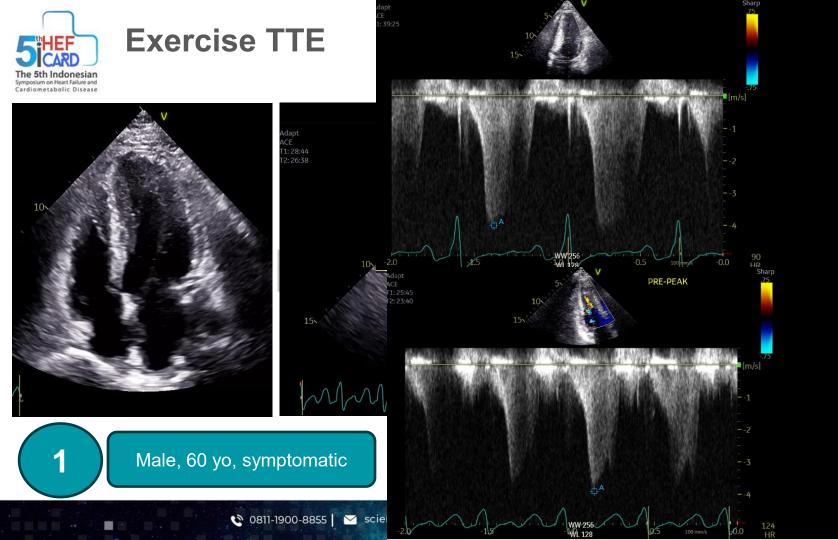
Bernardini A, et al. European Heart Journal Supplements (2023) 25 (Supplement C), C173–C178

III


508=

F2+BL

10mm/mV 25mm/



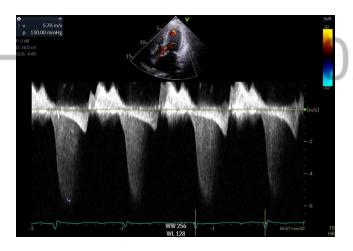
Echocardiography ACC/AHA Guidelines Recommendation (Class I-B)

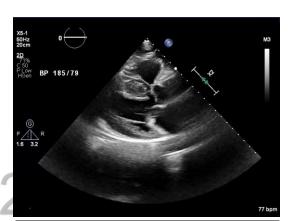
Ommen, SR et al. Circulation. 2024;149:e1239-e1311.

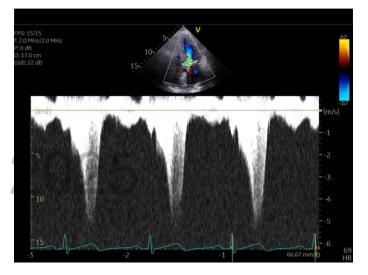
Indonesian Working Group on Heart Failure

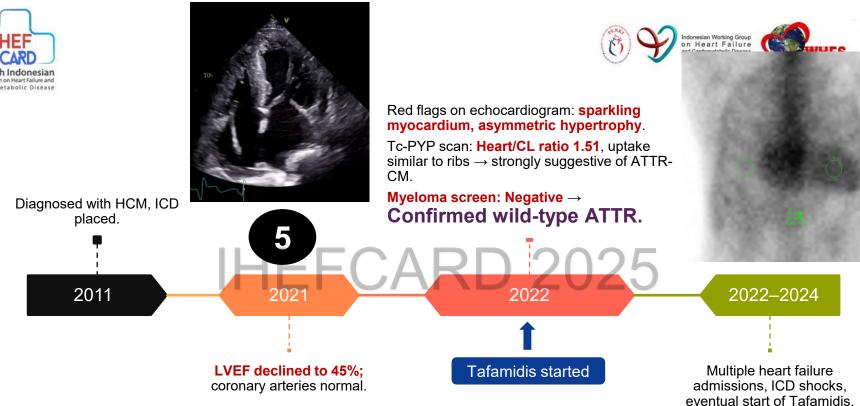
Measuremen	its [0 of 1]	
A: Dop Vel		
Max PG:	64.3 m	mHg
Max V:	401.0 cn	i/sec

	4:44
	6-Iul-20
Measurements	[0 of 1]
A: Dop Vel	
Max PG:	61.3 n
Max V:	391.5 ci




Mid-septal oHCM


-



73 yo-lady History of myeloma History of longstanding treated hypertension No symptoms Co-incidental findings upon orthopedic surgery

CMR Imaging ACC/AHA Guidelines Recommendations (Class I-B)

01

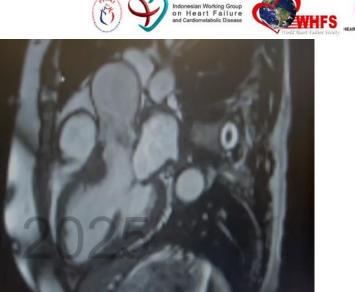
Clarifications for the patients in whom echocardiography is inconclusive

For whom a decision to proceed with ICD remains uncertain: access max LV wall thickness, EF, apical aneurysm, extent LGE

For oHCM in whom the anatomic mechanism of obstruction is inconclusive with echocardiography

Ommen, SR et al. Circulation. 2024;149:e1239–e1311.

Hypertrophy of the apical myocardium, with the maximal wall thickness measuring up to 12 mm at the apical lateral wall (indexed wall thickness 6.9 mm/m2), which is greater than the threshold of 5.6 mm/m2 proposed by Hughes et al (JACC, 2024).


Focal LGE at the mid-cavity inferior RV insertion point is non-specific but may be related to underlying pulmonary hypertension.

Kappa FLC (NUHS)	658.0 ^	
3.3 - 19.4		
mg/L		
Lambda	14.4	
FLC (NUHS)		
5.7 - 26.3		
mg/L		
Free Light	45.69 ^	
Kappa to		
Lambda	·(,A	
ratio		
(NUHS)		
0.26 - 1.65		

- HCM with **asymmetric hypertrophy** of the basal anterior septum, anterior left ventricular myocardium and **LVOT obstruction**.
- **Minimal LGE** in the inferior right ventricular insertion point from the basal to mid-cavity level.
- **SAM of the anterior mitral leaflet** with mild mitral regurgitation.

Why Perform Genetic Testing?

- Confirms sarcomeric etiology in the proband
- Enables cascade screening of at-risk relatives
- Informs prognosis and risk stratification

Who Should Be Tested? ARD 2025

- All patients with a clinical diagnosis of HCM
- Especially those with family history of HCM or SCD

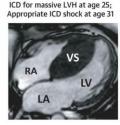
📌 Key Genes:

• MYH7, MYBPC3, TNNT2, TNNI3, ACTC1

Family Screening

Family Screening Strategy:


- Genotype-positive, phenotype-negative relatives: regular follow-up + imaging every 1–3 years
- Children: Start screening by age 10–12
- Earlier if symptoms or family history of SCD



Benefits:

- Early detection before LVH appears
- Guides surveillance, lifestyle, and ICD decisions

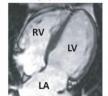
Septal myectomy for symptomatic outflow obstruction at age 33

(33)

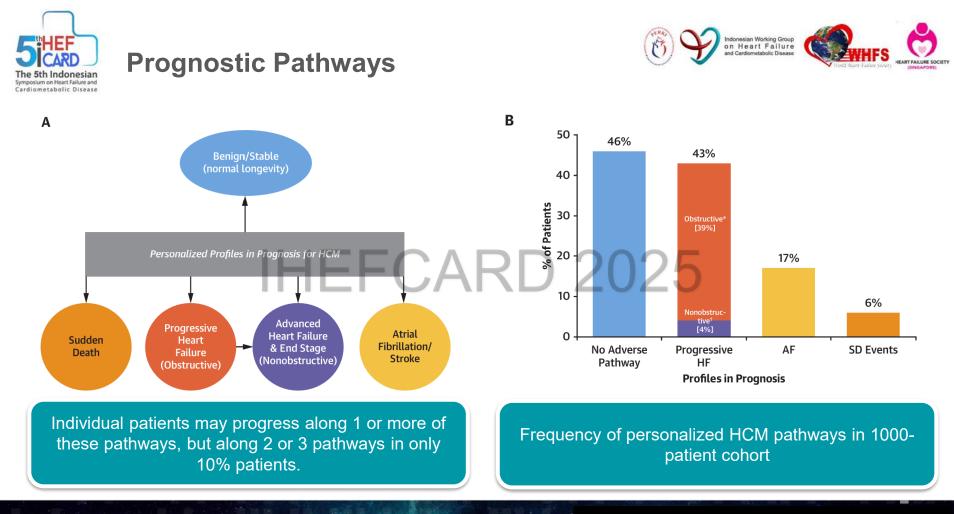
MYBPC3+

(62)

MYBPC3+ ICD for LV apical aneurysm at age 58



(54)



(29) MYBPC3+

Genotype + Phenotype -Asymptomatic

Maron, B.J. et al. J Am Coll Cardiol. 2022;79(4):372-389

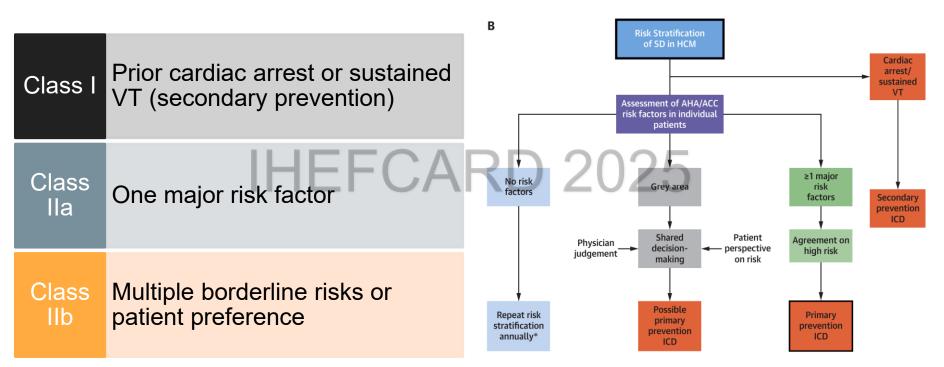
🔮 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | Maron, B.J. et al. J Am Coll Cardiol. 2022;79(4):372–389

Risk for Sudden Cardiac Death

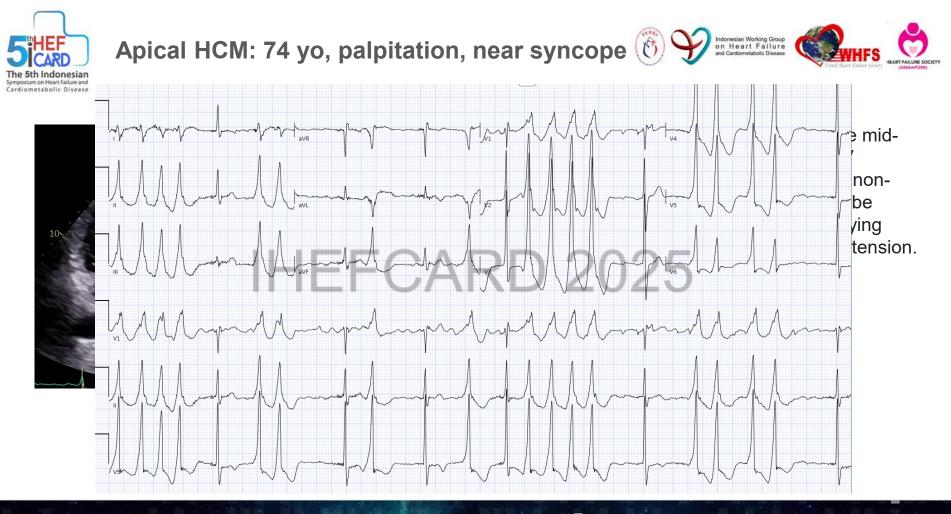
Major Risk Markers for SCD:

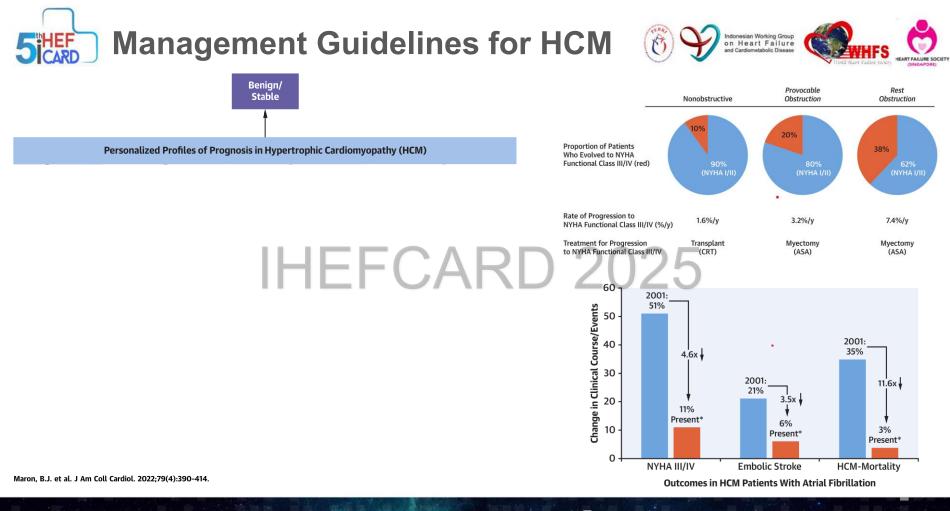
- Family history of SCD (<50 years)
- Unexplained syncope (especially exertional)
- Max LV wall thickness ≥30 mm
- Apical aneurysm
- Extensive LGE on CMR (≥15% of left ventricular (LV) mass)
- NSVT on Holter
- LVOT obstruction ≥30 mmHg

Z Additional Risk Modifiers:


- Blunted BP response to exercise
- High-risk sarcomeric mutations
- Risk scores (e.g., HCM Risk-SCD calculator)

Ommen, SR et al. Circulation. 2024;149:e1239–e1311.




ICD Recommendation

Maron, B.J. et al. J Am Coll Cardiol. 2022;79(4):390-414.

Lifestyle & Monitoring in HCM

Lifestyle Recommendations	 Avoid dehydration, excessive alcohol, stimulants Encourage moderate exercise (e.g., brisk walking) Avoid high-intensity/competitive sports in high-risk patients Caution with heavy lifting (especially if obstructive)
Routine Monitoring	 Annual cardiology follow-up Imaging (echo or CMR) every 1–3 years Assess wall thickness, obstruction, fibrosis (LGE)
Rhythm Monitoring	 ECG annually Holter or event monitor q1–2 years or if symptoms Consider implantable monitor in select cases

Cardiac Rehabilitation in HCM

"	Recommendation:	Supervised cardiac rehab is reasonable for selected patients Especially useful for deconditioned or post-procedure patients
Ø	Who Benefits:	Functional limitations or comorbidities (e.g., obesity, HF) Post-myectomy or sedentary lifestyle Need structured, safe exercise guidance
	Precautions:	Avoid high-intensity or competitive training Customize programs to HCM-specific risk (e.g., SCD, obstruction)

Class IIa, Level of Evidence B

Ommen, SR et al. Circulation. 2024;149:e1239-e1311.

HCM is common and treatable

Early diagnosis and tailored management save lives

IHEFCARD 2025

Genetic and molecular insights are transforming care

Multidisciplinary and personalized approach essential