

Symposium on Heart Failure and Cardiometabolic Disease

Getting Right the RV Failure

Hasanah Mumpuni

RSUP Dr. Sardjito Dep. Kardiologi dan Kedokteran vaskular FK-KMK UGM Yogyakarta

June, 12-14 2025

Sheraton Grand Jakarta Gandaria City, Jakarta, Indonesia <u>0 0811-1900-8855</u> scientific_ihefcard@inahfcarmet.org 0 @ina.hf | ihefcard.com

Outline

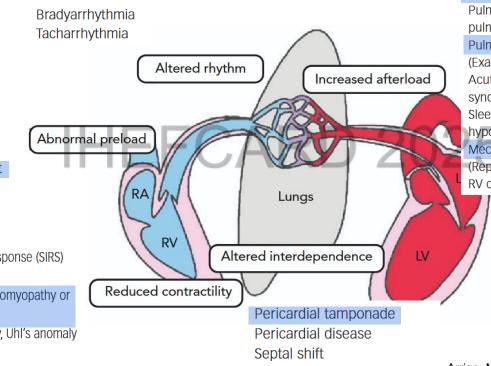
- Introduction
- Pathophysiology of RV Failure
- Diagnostic approach CARD 2025
- Management of RV Failure
- Conclusion

Introduction

- RV Dysfunction (RVD): evidence of abnormal RV structure or function, associated with poor clinical outcomes independently of the underlying mechanism of disease
- RV failure (RVF): as a clinical syndrome with signs and symptoms of HF resulting from RVD
- Diagnosis is subtle than overt LV dysfunction, often delayed, which worsens the prognosis
- Acute RVF is observed in 3%–9% of acute heart failure admissions, and the inhospital mortality ranges from 5% to 17%. In the special case of RVF after LVAD implantation, the prevalence ranges from 9% to 40%

Mechanism of RVD

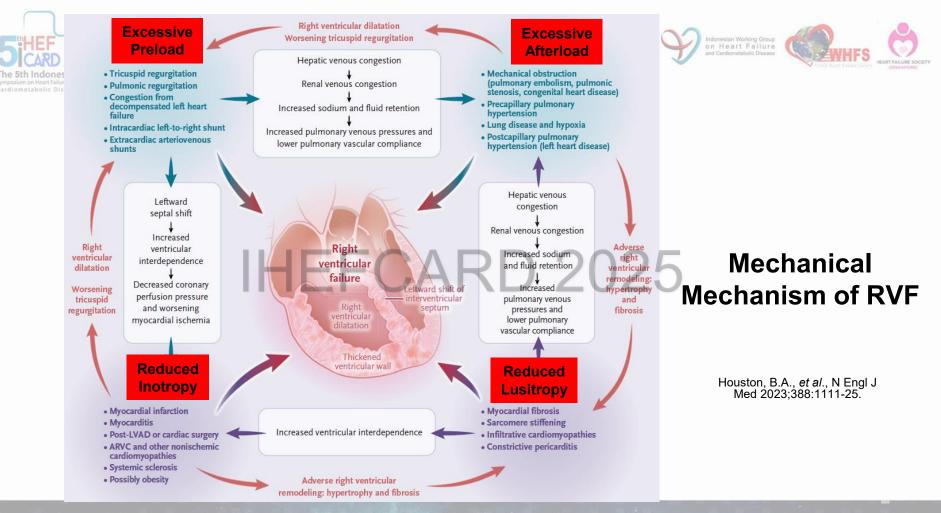
Hypo- or hypervolaemia LV forward failure Pericardial tamponade Mechanical ventilation Chronic left-to-right shunt


RV ischaemia/RV infarction

1

RV injury, systemic inflammatory response (SIRS) Myocarditis

Cardiomyopathies (e.g. dilated cardiomyopathy or hypertrophic cardiomyopathy)


Arrhythmogenic RV cardiomyopathy, Uhl's anomaly

LV backward failure (pulmonary hypertension associated with left-sided heart disease) Pulmonary embolism, chronic thromboembolic pulmonary hypertension Pulmonary artery hypertension (Exacerbated) chronic pulmonary disease Acute lung injury/acute respiratory distress syndrome Sleep-related breathing disorders, obesityhypoventilation syndrome Mechanical ventilation (Repaired) congenital heart disease with systemic RV or RV outflow obstruction

Arrigo, M., et al., Cardiac Failure Review 2019;5(3):140-6

2.11

Causes of Right Ventricular Failure

Acute RVF

Volume overload

Acute left-sided heart failure

LVAD implantation

Pressure overload

Acute pulmonary embolism

Hematological disorders (e.g., acute chest syndrome in sickle cell disease)

Decreased contractility

Acute myocardial ischemia

Fulminant myocarditis

Pericardial disease (tamponade)

Sepsis (can cause increased venous return and volume overload)

Post-cardiotomy shock

Reduced pericardial compliance

Chronic RHF

Exacerbation of chronic lung disease and/or hypoxia

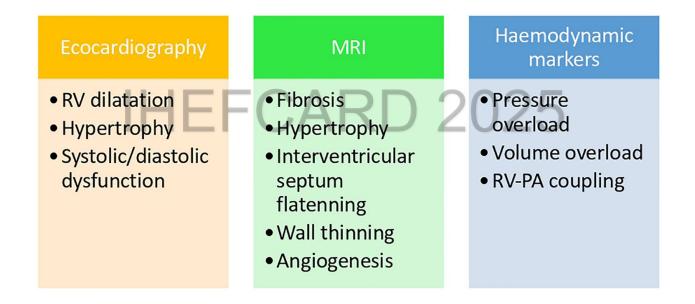
Chronic pulmonary hypertension (groups 1-5)

Pericardial disease (constrictive pericarditis)

Arrhythmias (supraventricular or ventricular tachycardia)

Congenital heart disease (e.g., atrial or ventricular septal defect, Ebstein's anomaly)

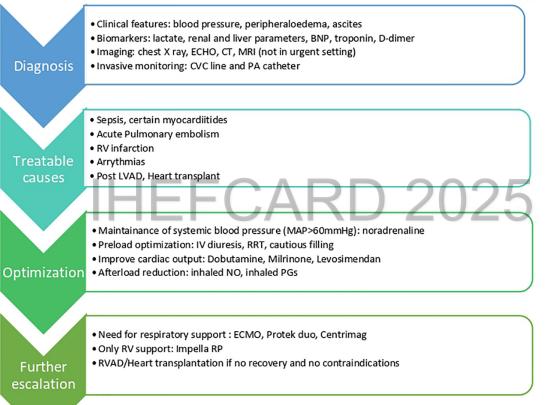
Valvulopathies (e.g., tricuspid valve regurgitation, pulmonary valve stenosis)


Cardiomyopathies (e.g., arrhythmogenic right ventricular dysplasia, familial, idiopathic)

Myocarditis or other inflammatory diseases

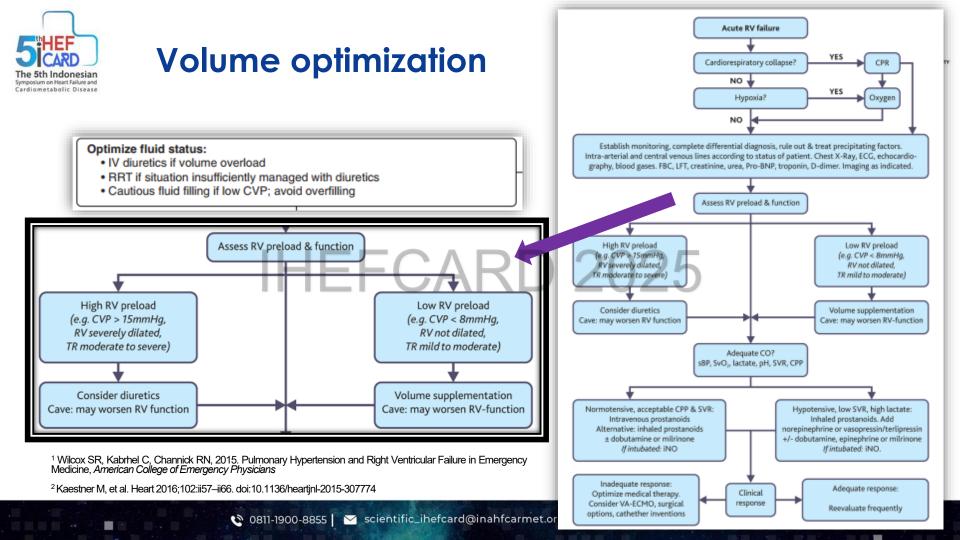
Correlation between pathophysiological mechanism and diagnostic tools

Diagnostic of RVF



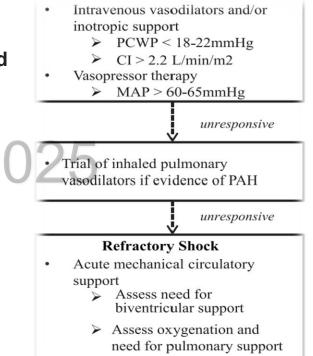
The 5th Indonesian				
Symposium Cardiome Clinical	Biomarkers	Echocardiography	Hemodynamic Parameter	MRI
 Raised JVP Ascites Peripheral edema Liver congestion Low cardiac output state Hypoxemia 	 BNP Cardiac troponin Lactate D-Dimer Liver biochemistry Renal Function 	 TAPSE <17 mm RV dilatation RVEDD / VEDD >1 IVS flattening, shift: LV D shaped TR Vel > 2.8 m/s IVC diameter > 21 mm, collapsibility < 50% FAC <35% 3D RVEF < 45% Pericardial fluid > 5 mm RV Wall thickness > 5mm 	 RAP or CVP > 15 mmHg PAPI:< 1 in acute MI; < 1.85 in post LVAD RAP/PCWP: > 0.86 in acute MI; > 0.63 in post LVAD RV stroke work index < 0.25 – 0.30 mmHg.L/m² PA compliance < 2.5 mL/mmHg PVR > 3.6 WU in post LVAD 	 RV Volume RV mass RV EF RV fibrosis RV volume changes and intermittent interventricular septal flattening

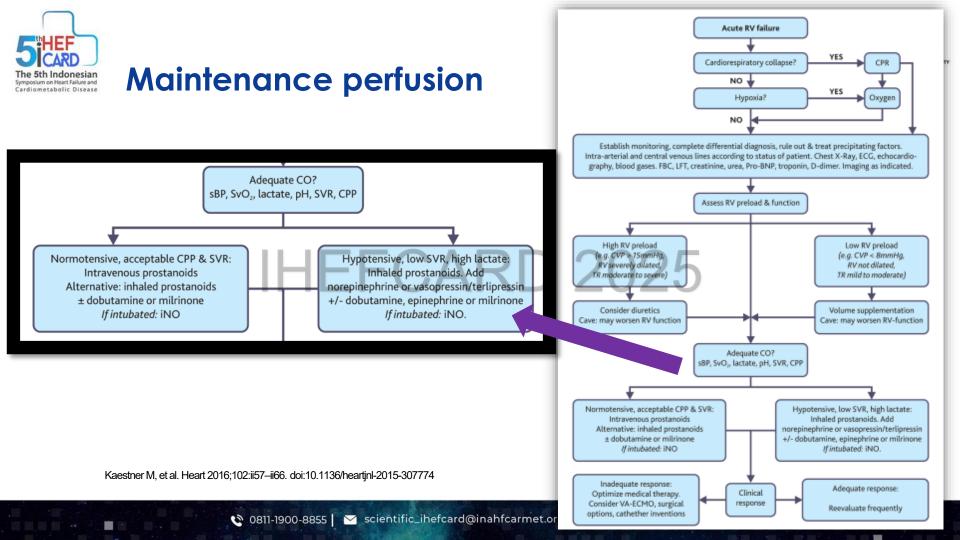
The management of RVF



Monteagudo-Vela et al. Cardiovasc. Med. 10:998382. doi: 10.3389/fcvm.2023.998382

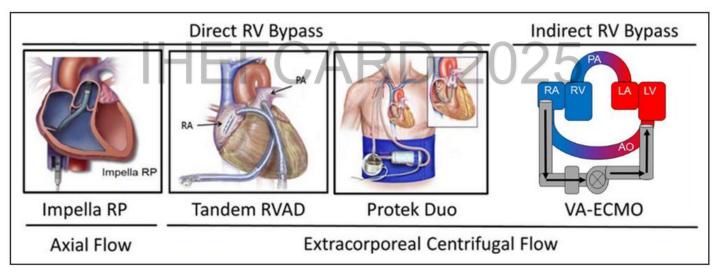
Consideration of mechanical circulatory support




Maintenance perfusion (MAP & CI)

<u>GOAL</u>: reducing RV afterload, enhancing forward flow, and augmenting RV perfusion

- Afterload reduction → correct hypoxemia and acidosis, NTG or sodium nitroprusside, inhaled and parenteral epoprostenol and nitric oxide
- Augment contractility → inotropes (milrinone or dobutamine)
- **Maintain perfusion** → dopamine, norepinephrine, and epinephrine





- Mechanical Circulatory support (MCS) indicated for patient that refractory to optimal medical management
- Used for bridge to recovery; bridge to heart and/or lung transplantation; or as permanent therapy

Konstam, M.A., et al., Circulation 2018; 137(20):e578-e622

Indonesiar vmposium on Heart Failure and Cardiometabolic Disease

Right Heart

Failure

LV Failure **Total Artificial** Heart **ECMO** Konstam, M.A., et al., Circulation 2018; 137(20):e578-e622 ≥ scientific_ihefcard@inahfcarmet.org | ② @ina.hf | ihefcard.com 0811-1900-8855

Implantable

RVAD

Percutaneous

RVAD

Isolated RV

Failure

Pulmonary

Etiology

• Diuretics

- Maintain sufficient preload
- Reduce RV volume overload, ventricular interdependence, and congestion.
- Often require high dose diuretics
- Combination therapy loop diurctics with thiazides to augment natriuresis
- Sodium and fluid Restriction
 - Sodium < 3 g/day
 - Fluid 1.5 2 L/day, when patients had refractory congestion and hyponatremia

- RAAS-inhibitor, β-Blocker, Hydralazine:
 - **Not recommended** in patients with PH regardless of RHD/RVF, unless associated with hypertension, coronary artery disease, or LHF
 - Although angiotensin-converting enzyme inhibitors (ACEIs) have demonstrated positive impact on filling pressures and end-diastolic volume of RV, no improvement in hemodynamics or exercise capacity is demonstrated
- Digoxin
 - Meta-analysis did not find digoxin to be associated with improvement in RVEF, exercise capacity, or New York Heart Association class
- The function of beta-blockers in RVF improvement is still controversial as also the use of nesiritide, a BNP, demands more research

Pulmonary Vasodilators:

- \downarrow RV afterload \rightarrow \uparrow outcomes among group 1 PH
- Riociguat: ↑ exercise capacity and PVR in patients with persistent CTEPH
- Prostacyclin analogs:
 - Benefit in PH group I
 - Contraindicated in PH group 2
- PDE5i:
 - Contraindicated in combination with nitrates
 - Beneficial in PH group 1
 - Uncertain outcome PH group 2
- ERA:
 - Improvements in HF symptoms, exercise capacity, hemodynamics, and time to clinical worsening in PH group 1

2025

Monitor liver function

Pulmonary Hypertension Medications

Table 4. Pulmonary hypertension medications

Selective pulmonary vasodilators	Clinical application	Observations	
Calcium channel blockers • Nifedipine • Amlodipine • Diltiazem	 IPAH, HPAH, DPAH with positive vasoreactivity testing High doses needed (ie, amlodipine 15-30 mg/d) 	• Adverse effects: systemic hypotension and periphera edema	
Endothelin receptor antagonists	• PAH	• Teratogenic effects	
 Bosentan (dual) Ambrisentan (A receptor) Macitentan (dual) 	• Improve symptoms, exercise capacity, hemodynamics, and time to clinical worsening ¹³⁷⁻¹³⁹	 Peripheral edema (ambrisentan) Transaminitis (bosentan) Important drug interactions Anemia (macitentan) 	
Phosphodiesterase 5 inhibitorsSildenafilTadalafilGuanylate cyclase stimulators	 PAH Improve symptoms, exercise capacity, hemodynamics, and time to clinical worsening (tadalafil)^{140,141} PAH and CTEPH 	 Hypotension when used with nitrates Side effects: headache, epistaxis Side effects: headache, epistaxis 	
Riociguat	• Improves exercise capacity, hemodynamics, functional class, and time to clinical worsening ¹⁴²		
Prostacyclin analogues	• IPAH and systemic sclerosis PAH	• Inhibit platelet aggregation	
• Epoprostenol (I.V., inhaled)	Requires continuous infusions	• Side effects: jaw pain, diarrhea, infusion site pain	
 Iloprost (inhaled) Teprostinil (inhaled, SC, I.V., enteral) Beraprost (enteral) 	 Improved symptoms, exercise capacity, hemodynamics, and mortality (epoprostenol)¹⁰⁴ Long-term efficacy in PAH 	• Pump and/or insertion site complications	
Prostacyclin receptor agonist	• PAH	• Side effects: headache, jaw pain, diarrhea, nausea	
 Selexipag 	 Reduced the risk of morbidity and/or mortality by 40%¹⁴³ 	neudeolo, jan pain, enanneu, nuuseu	

CTEPH, chronic thromboembolic pulmonary hypertension; DPAH, drug-associated pulmonary arterial hypertension; IPAH, idiopathic pulmonary arterial hypertension; I.V., intravenous; HPAH, heritable pulmonary arterial hypertension; PAH, pulmonary arterial hypertension; SC, subcutaneous.

Available therapy for RVF

Treatments	Therapeutic effect
Diuretics [8]	Preload optimization
Nitric oxide [63]	Afterload optimization
Resynchronization therapy [63]	Ejection fraction
Dobutamine or (dobutamine + nitric oxide) [63]	Improved contractility
Anticoagulants [63]	Pulmonary embolism
ACEI, ARB [63]	Neurohormonal responses
Oxygen therapy, transplantation, RV assist device, ventilation [63]	Improvement of cardiac function

Chronic RV Failure in Congenital Heart Diseases

- No adequately powered clinical trials have been completed for medical therapies in RVF with CHD
- RVF result form pressure and volume afterload can be seen after repair TOF, pulmonary atresia, Ebstein anomaly, and pulmonary valvotomy for congenital PS
- CRT in CHD: preliminary studies demonstrated clinical improvement and improvement in RV function
- Current data do not support the routine administration of standard HF drug therapies to patients with CHD with either a single RV or systemic RV or in patients with a pulmonary RV at risk for RV failure
- Might require heart or heart-lung transplant

Surgical Management of RVF with VHD

Pulmonal Regurgitation

 symptoms or signs of RVD have occurred and PR is severe, the setting of severe RV dilation or dysfunction (cardiac MRI–derived RV end-diastolic volume index >150 mL/m2, RV end-systolic volume index >80 mL/m2, RVEF <47%) or symptomatic atrial and ventricular arrhythmias.

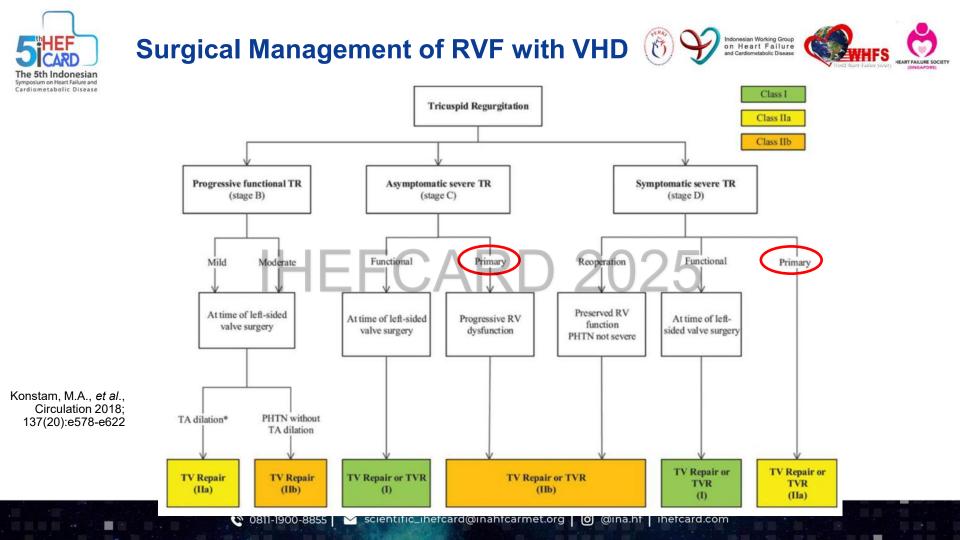
Indonesian Working Group on Heart Failure

(5)

- Current guidelines support surgery for severe PR along with (1) moderate to severe RVD (**Class IIa**; Level of Evidence B), (2) moderate to severe RV enlargement (Class IIa; Level of Evidence B), (3) symptomatic or sustained atrial and ventricular arrhythmias (Class IIa; Level of Evidence C), or (4) moderate to severe TR (Class IIa; Level of Evidence B)
- Transcatheter PV replacement is also now possible

Pulmonal Stenosis

- PS may be treated with either percutaneous balloon PV commissurotomy or valve replacement
- Surgical ther- apy, as opposed to percutaneous therapies, is recom- mended for patients with severe PS and associated hy- poplastic pulmonary annulus, severe PR, subvalvular PS, or supravalvular PS.



Tricuspid Stenosis

 Severe TS is generally performed in conjunction with surgery for left-sided valve disease, most commonly MS - RHD

Tricuspid Regurgitation

- The severity of TR affects prognosis even when controlling for LV dysfunction or PH. In a study of 5223 patients at 3 Veterans Affairs medical centers, 1-year survival rates were 92%, 90%, 79%, and 64% in patient groups with no, mild, moderate, or severe TR, respectively.
- Moderate or greater TR was associated with increased mortality regardless of PASP or LVEF.
- Severe TR, older age, lower LVEF, inferior vena cava dilation, and moderate or greater RV enlargement were associated with worse survival.

- ✓ Diagnosis RVF often missed and delayed which will worsen its prognosis
- Diagnostic approach of RVF included clinical sign and symptoms, biomarkers, echocardiography, hemodynamics parameter, and MRI
- ✓ Cornerstone management of acute RVF are:
 - Establishing diagnosis and treat the specific underlying causes
 - Optimalization of volume status
 - ✓ Maintain perfusion and myocardial contractility
- RVF in VHD can be treated percutaneously or surgically depending of cause, severity, and concomitant lesion