

The 5th Indonesian Symposium on Heart Failure and Cardiometabolic Disease

ASCVD and Type 2 Diabetes : Novel Arsenal for The Deadly Duo

Habibie Arifianto, MD, PhD, FIHA Sebelas Maret Heart Failure Clinic

June, 12-14 2025

Sheraton Grand Jakarta Gandaria City, Jakarta, Indonesia © 0811-1900-8855 | Scientific_ihefcard@inahfcarmet.org | @ @ina.hf | ihefcard.com

Disclosure

- I have received honorarium as speaker/consultant, support for research/attendance at educational meetings from:
 - Novo Nordisk IHEFCARD 2025
- Once-weekly Semaglutide 0.25 1 mg available in Indonesia under the brand name of Ozempic [®], which is indicated for the treatment of adults with insufficiently controlled type 2 diabetes mellitus as an adjunct to diet and exercise in addition to metformin, metformin and sulphonylurea, metformin and basal insulin, or sodium-glucose cotransporter 2 (SGLT2) inhibitor.
- This is only for educational purpose and no off-label promotion is intended

How far can Diabetes do to Our Heart?? 2025

🔇 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🙆 @ina.hf | ihefcard.com

Meet Mr. H

- History of PCI at Prox. LAD (2020)
- History of 3 times hHF in a year
- LVEF 35%

Condition(s)

- Type 2 diabetes with OAD. HbA1c 6.8%, FG : 115 mg/dL
- Dyslipidemia ; LDL-C 105 mg/dL EFCARD 202 .

Treatments

- Candesartan 16 mg O.D
- Spironolacton 25 mg O.D ٠
- Bisoprolol 5mg O.D ٠
- ASA 80mg O.D
- Metformin 1000 mg BID
- Sitagliptin 100 mg OD
- Rosuvastatin 10 mg daily

ECG

CS Scanned with CamScanner

Echocardiography

LVH eccentric remodelling LVEF 32% RWMA : akinetic at mid-apical LAD, basal-apical RCA Moderate functional MR

Treatments

- Candesartan 16 mg O.D
- Spironolacton 25 mg O.D
- Bisoprolol 5mg O.D
- ASA 80mg O.D
- Metformin 1000 mg BID
- Sitagliptin 100 mg OD
- Rosuvastatin: 10 mg daily

New Treatments

- ARB switched to ARNI 50mg BID
- Spironolacton titrated to 50mg OD
- Bisoprolol titrated to 10 mg OD
- ASA 80mg OD 25
- OAD switched to Dapagliflozin/metformin
 10/1000mg OD
- Statin upgraded to Rosuvastatin 40mg OD
- Furosemide 40mg OD

The Patient Felt much better with **ZERO** hospitalization in a Year

1 Years Follow Up

Cardiometabolic Disease

-

Cardiometabolic Disease

FECA 202

Uncompressed

CMR-SSFP

CMR-SSFP

0811-1900-8855

CMR-First Pass Perfusion

Management of People with ASCVD & T2D

😢 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🞯 @ina.hf | ihefcard.com

😢 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🞯 @ina.hf | ihefcard.com

E Diabetes as a Global Emergency

The 5th Indonesian Symposium on Heart Failure and

At a glance	2019	2045		Table	3.5 Top 1	0 countries	or terri	tories for n	umber of ad	lults (20)–79 years)	with diabet
	•	•			in 20	19, 2030 and	l 2045					
					2019			2030			2045	
otal world population	7.7 billion	9.5 billion				Number of			Number of			Number of
Adult population (20-79 years)	5.0 billion	6.4 billion		Devile	Country or	diabetes	Deals	Country or	diabetes	Develo	Country or	diabetes
Diabetes (20-79 years)				напк	territory	(millions)	напк	territory	(millions)	капк	territory	(millions)
Global Prevalence	9.3%	10.9%		1	China	116.4 (108.6-145.7) ⁱ	1	China	140.5 (130.3-172.3)	1	China	147.2 (134.7-176.2)
lumber of people with diabetes	463.0 million	700.2 million		2	India	77.0 (62.4-96.4)	2	India	101.0 (81.6-125.6)	2	India	134.2 (108.5-165.7)
Map 3.1 Estimated total number of adult	ts (20–79 years) with diabetes in 2019	EF()	3	United States of America	31.0 (26.7-35.8)	23	United States of America	34.4 (29.7-39.8)	3	Pakistan	3 7.1 (15.8–58.5)
	*			4	Pakistan	19.4 (7.9–30.4)	4	Pakistan	26.2 (10.9-41.4)	4	United States of America	36.0 (31.0-41.6)
	12			5	Brazil	16.8 (15.0-18.7)	5	Brazil	21.5 (19.3-24.0)	5	Brazil	26.0 (23.2-28.7)
		-		6	Mexico	12.8 (7.2-15.4)	6	Mexico	17.2 (9.7-20.6)	6	Mexico	22.3 (12.7-26.8)
				7	Indonesia	10.7 (9.2–11.5)	7	Indonesia	13.7 (11.9-14.9)	7	Egypt	16.9 (9.0-19.4)
<100 thousand		A COMPANY		8	Germany	9.5 (7.8-10.6)	8	Egypt	11.9 (6.4-13.5)	8	Indonesia	16.6 (14.6–18.2)
500 thousand -<1 millio 1-<10 million 10-50 million				9	Egypt	8.9 (4.8-10.1)	9	Bangladesh	11.4 (9.4–14.4)	9	Bangladesh	15.0 (12.4–18.9)
≥20 million No estimates made				10	Bangladesh	8.4 (7.0-10.7)	10	Germany	10.1 (8.4–11.3)	10	Turkey	10.4 (7.4–13.3)

🕲 0811-1900-8855 🛛 😂 Scien 🖓 Defcard@inanfcarmet.org 🛛 🎯 @ina.hf | ihefcard.com

Source: Muharram, F.R., Multazam, C.E.C.Z., Mustofa, A., Socha, W., Andrianto, Martini, S., Aminde, L. and Yi-Li, C. (2024), The 30 Years of Shifting in The Indonesian Cardiovascular Burden-Analysis of The Global Burden of Disease Study. Journal of Epidemiology and Global Health, 14. doi:https://doi.org/10.1007/s44197-024-00187-8. World Heart Observatory. Indonesia, Jonline J Available at: https://world-heart-federation.org/world-heart-federation.org/world-heart-federation.org/indonesia/shaping the Cardiovascular Burden-Analysis of The Global Burden of Disease Study. Journal of Epidemiology and Global Health, 14. doi:https://doi.org/10.1007/s44197-024-00187-8. Shaping the Cardiovascular Disease Access Policy Landscape Indonesia. Available at: https://wwi.ayu.a.org/.pdf

Stroke 2- to 4-fold increase in cardiovascular mortality and stroke³ **Diabetic** retinopathy Cardiovascular Leading cause of blindness in working-age adults¹ disease 8/10 diabetic patients die from CV events⁴ **Diabetic** neuropathy Leading cause of non-Diabetic traumatic lower extremity amputations⁵ nephropathy Leading cause of end-stage renal disease² Kempen J, et al. Arch Ophthalmol. 2004;122(4):552-563 2. Yuan MC, et al. Clin Kidney J. 2017 Apr; 10(2): 257-262 3.

Fox CS, et al. JAMA. 2004;292(20):2495-2499 4.

The pathophysiology of CV disease in patients with T2D is complex

• T2D shares common risk factors with CV disease and contributes to vascular damage

Clinical CV disease

Prevalence of subclinical CV disease across 1343 patients with diabetes aged ≥65 years in the US

*Absence of prevalent clinical disease at baseline: ankle–brachial index ≤0.9, internal carotid artery wall thickness >80th percentile, common carotid artery wall thickness >80th percentile, carotid stenosis >25%, major electrocardiogram abnormalities (based on the Minnesota code), and a Rose Questionnaire positive for claudication or angina pectoris in the absence of clinical diagnosis of angina pectoris or claudication

Kuller LH et al. Arterioscler Thromb Vasc Biol 2000;20:823

Cardiovascular disease was the leading cause of death among the over 16,000 patients with type 2 diabetes (T2DM) who were enrolled in the SAVOR-TIMI 53 trial.

J Am Coll Cardiol. 2021 Apr 13;77[14]:1837-40

Note: There were 798 deaths in SAVOR-TIMI 53 after a median follow-up of 2.1 years.

Infection

CV disease occurs early and is the leading cause of mortality in patients with T2D

CV, cardiovascular; T2D, type 2 diabetes

Management of People with ASCVD & T2D

😢 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🞯 @ina.hf | ihefcard.com

Management of People with ASCVD & T2D

2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes

Cardiovascular Risk Categories in DM Patients

Very high CV risk	Patients with T2DM with:						
	Clinically established ASCVD or						
	 Severe TOD or 10-year CVD risk ≥20% using SCORE2-Diabetes 						
High CV risk	 Patients with T2DM not fulfilling the very high risk criteria and a: 10-year CVD risk 10 to <20% using SCORE2-Diabetes 						
Moderate CV risk	 Patients with T2DM not fulfilling the very high risk criteria and a: 10-year CVD risk 5 to <10% using SCORE2-Diabetes 						
Low CV risk	 Patients with T2DM not fulfilling the very high risk criteria and a: 10-year CVD risk <5% using SCORE2-Diabetes 						

2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes

E SOCIETY

💓 ESC —

Marx N et al. European Heart Journal. 2023; 00, 1–98 https://doi.org/10.1093/eurheartj/ehad192

0811-1900-8855

🖂 scien

What PERKI Guideline says

1. Kelompok Kerja Prevensi dan Rehabilitasi Kardiovaskular dan Perhimpunan Dokter Spesialis Kardiovaskular Indonesia. Panduan Prevensi Penyakit Kardiovaskular Aterosklerosis. 2022

The effects of semaglutide on CV risk factors

Semaglutide has pleiotropic effects on CV risk factors & reduces MACE risk in T2D¹⁻⁸

CV, cardiovascular; GLP-1RA, GLP-1, glucagon-like peptide-1 receptor agonist; HFpEF, heart failure with preserved ejection fraction; MACE, major adverse cardiovascular events; T2D, type 2 diabetes.

1. Arnett DK, et al. Circulation. 2019;140:e596-e646; 2. Wilding JPH, et al. N Engl J Med. 2021;384:989; 3. Aroda VR, et al. Diabetes Metab. 2019;45:409-418; 4. Marso SP, et al. N Engl J Med. 2016;375:1834-1844; 5. Husain M, et al. N Engl J Med. 2019;381:841-851; 6. Husain M, et al. Diabetes Metab. 2020;22(3):442-451; 7. Knudsen LB, Lau J. Front Endocrinol (Lausanne). 2019;10:155; 8. Rakipovski G, et al. JACC Basic Transl Sci. 2018;3:844-857;

Mechanisms of GLP-1 RA modify the risk of ASCVD

SUSTAIN 6: A 2-year CVOT for semaglutide^{1,2}

CVOT=cardiovascular outcomes trial; T2D=type 2 diabetes; CVD=cardiovascular disease; CV=cardiovascular; MI=myocardial infarction.

References: 1. Ozempic* [summary of product characteristics]. Bagsværd, Denmark: Novo Nordisk A/S; July 2018. 2. Marso SP et al. N Engl J Med. 2016;375(19):1834–1844

Baseline characteristics (1/2)

	Semaglutide 0.5 mg	Semaglutide 1.0 mg	Placebo 0.5 mg	Placebo 1.0 mg	Total
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Age, years	64.6 (7.3)	64.7 (7.1)	64.8 (7.6)	64.4 (7.5)	64.6 (7.4)
Sex, male, n (%)	495 (59.9)	518 (63.0)	482 (58.5)	507 (61.5)	2002 (60.7)
Body weight, kg*	91.8 (20.3)	92.9 (21.1)	91.8 (20.4)	91.9 (20.8)	92.1 (20.6)
T2D, mean (SD)			DD 20	125	
Diabetes duration, years	14.3 (8.2)	14.1 (8.2)	14.0 (8.5)	13.2 (7.4)	13.9 (8.1)
HbA _{1c} , %	8.7 (1.4)	8.7 (1.5)	8.7 (1.5)	8.7 (1.5)	8.7 (1.5)
Cardiovascular risk factors					
Systolic blood pressure, mmHg*	136.1 (18.0)	135.8 (17.0)	135.8 (16.2)	134.8 (17.5)	135.6 (17.2)
Diastolic blood pressure, mmHg*	77.1 (9.8)	76.9 (10.2)	77.5 (9.9)	76.7 (10.2)	77.0 (10.0)
LDL cholesterol, mg/dL [†]	81.6 (47.1)	83.3 (41.2)	80.9 (48.1)	83.6 (45.9)	82.3 (45.6)
Never smoked [‡]	390 (47.2)	364 (44.3)	391 (47.5)	348 (42.2)	1493 (45.3)

Means and standard deviations. Geometric means and coefficients of variation. [‡]Number of subjects (N) and percentage (%) LDL, low-density lipoprotein; SD, standard deviation 🔇 0811-1900-8855 | 🖂 scientific_ihefcard@inahfcarmet.org | 🙆 @ina.hf | ihefcard.com LDL, low-density lipoprotein; SD, standard deviation 🕚 0811-1900-8855 | Marso SP et al. *N Engl J Med* 2016;375:1834–44

Baseline characteristics (2/2)

	Semaglutide 0.5 mg N (%)	Semaglutide 1.0 mg N (%)	Placebo 0.5 mg N (%)	Placebo 1.0 mg N (%)	Total N (%)
History of cardiovascular disease					_
lschaemic heart disease	493 (59.7)	495 (60.2)	510 (61.9)	496 (60.1)	1994 (60.5)
Myocardial infarction	266 (32.2)	264 (32.1)	267 (32.4)	275 (33.3)	1072 (32.5)
Heart failure	201 (24.3)	180 (21.9)	190 (23.1)	206 (25.0)	777 (23.6)
Ischaemic stroke	89 (10.8)	89 (10.8)	96 (11.7)	109 (13.2)	383 (11.6)
Haemorrhagic stroke	28 (3.4)	24 (2.9)	27 (3.3)	29 (3.5)	108 (3.3)
Hypertension	772 (93.5)	771 (93.8)	756 (91.7)	760 (92.1)	3059 (92.8)

Semaglutide reduced CV events within 2 years

In people with established CVD /CV risk and T2D*

26%

CV risk reduction (primary MACE endpoint)⁺

HR 0.74 [95% CI: 0.58;0.95] p<0.001 for non-inferiority p=0.02 for superiority*

N=3297 ; *Semaglutide reduced the risk of CV events by 26% beyond standard of care compared with placebo in **patients with T2D at high CV risk**; †MACE: Composite endpoint comprising the first occurrence of CV death, non-fatal myocardial infarction or non-fatal stroke using 'in-trial' data from subjects in the full analysis set. Hazard ratio is from a stratified proportional hazards model; [‡]patients aged 55 years or older with coronary, carotid or lower extremity artery stenosis >50%, left ventricular hypertrophy, an eGFR <60 ml min⁻¹ [1.73 m]⁻² or albuminuria; CI, confidence interval; CV, cardiovascular; EAC, event adjudication committee; MACE, major adverse cardiovascular event; SoC, standard of care; T2D, type 2 diabetes; 1. Marso SP et al. *N Engl J Med* 2016;375:1834–1844

Semaglutide reduces the incidence of stroke⁺

N=3297 ; *Semaglutide reduced the risk of non-fatal stroke by 39% beyond standard of care compared with placebo in **patients with T2D at high CV risk**;. *non-fatal stroke; Hazard ratio is from a stratified proportional hazards model; [‡]patients aged 55 years or older with coronary, carotid or lower extremity artery stenosis >50%, left ventricular hypertrophy, an eGFR <60 ml min⁻¹[1.73 m]⁻² or albuminuria; CI, confidence interval; CV, cardiovascular; EAC, event adjudication committee; MACE, major adverse cardiovascular event; SoC, standard of care; T2D, type 2 diabetes; 1. Marso SP et al. *N Engl J Med* 2016;375:1834–1844

Aalen-Johansen plots for time to first occurrence of any stroke with the pooled semaglutide vs placebo

Adapted from Figure 1. Semaglutide: Neurote=43; placebo: Neurote=63. Aalen-Johansen plots for time to first occurrence of any stroke* with the pooled semaglutide vs placebo in people with T2D at high CV risk, based on pooled data from the SUSTAIN 6 and PIONEER 6 trials. *Included fatal and nonfatal strokes. The cumulative incidence rates for time to first stroke were calculated using Aalen-Johansen method, adjusting for all-cause death as a competing risk. The hazard ratio was estimated from a Cox regression model stratified by trial with treatment (pooled semaglutide vs placebo) as a factor

Cl, confidence interval; CV, cardiovascular; HR, hazard ratio; T2D, type 2 diabetes Strain et al. Stroke 2022; doi: 10.1161/STROKEAHA.121.037775 2. Alfayez, O.M., et al, Cardiovascular Diabetology, 2020. 19(1), pp.1-14

+ Results are from a network meta-analysis that indirectly compared the CV safety and mortality effects among different GLP-1 RAs in patients with T2D. A total of 7 GLP-1 RA CVOTs were included where each compared the CV safety of a GLP-1 RA (lixisenatide, liraglutide, semaglutide s.c., exenatide, albiglutide, dulaglutide and semaglutide oral) to placebo, both as an added on therapy to the SOC (N=56004)

Semaglutide shows positive effect on a composite endpoint assessing "new or worsening nephropathy"

SUSTAIN 6: nephropathy composite

antidiabetic drug; T2D, type 2 diabetes

Marso SP et al. N Engl J Med 2016; 375(19):1834-1844

Semaglutide treated patients had a significantly lower Mean SBP compared to placebo over 2 years, this could have contributed to the observed reduction in cardiovascular risk by semaglutide.

				ETR	(95% CI)		
Total cholesterol			i				
		F		0.97*	(0.95; 1.00)		
				0.99	(0.97; 1.01)		
LDL cholesterol							
				0.96*	(0.93; 0.99)		
				0.99	(0.96; 1.03)		
HDL cholesterol							
				1.00	(0.99; 1.02)		
				1.04***	(1.02; 1.06)		
Triglycerides							
				0.97	(0.93; 1.01)		
				0.93**	(0.89; 0.97)		
Free fatty acids			_				
				0.99	(0.95; 1.04)		
				0.92**	(0.88; 0.96)		
	0.8	0.9	10	1 1			
Semaglutide 0.5 mg	0,0	5,5	1,0	1,1			
Semaclutide 1.0 mg		ETR (semaglutide:placebo)					
Joinagiuliuo 1.0 mg							

Supplementary Table 10. Data are ETRs to baseline, and treatment ratios with Cl, based on in-trial data for scheduled visits for the full analysis set. Each parameter was analysed by a mixed model for repeated measures with treatment group (semagulide 0.5 and 1.0 mg and corresponding placebo doses) and stratification (9 levels) as fixed factors and the corresponding baseline value of the parameter as a covariate, all nested within visit. Lipid parameters were analysed on log-scale. Cl, confidence interval; ETR, estimated treatment ratio, HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol. ****0.001; *****0.001.

Take Home Messages

- Cardiovascular disease still become main problem in Indonesia and another parts of the world, and diabetes responsible for more of it
- Up to 1/3 of people with established CVD have T2D & People with Type 2 Diabetes are 2-4 times more likely to experience ASCVD events (e.g. heart attack and stroke)
- Cardiovascular disease and diabetes → share the same soils of risk factor and contributes to vascular damage
- Lowering risk of CVD in diabetes patient is the most important thing to do to cut the risk of cardiovascular continuum
- In people with ASCVD and Type 2 Diabetes comorbidity, ESC 2023, ADA 2025 and PERKI Guideline 2022 recommends adding GLP-1 RA/SGLT-2i with proven CV benefits, like Semaglutide, for people with ASCVD and T2D
- The recommendation of adding GLP-1 RA/SGLT-2i with proven CV benefits is to reduce CV risk, independent of glucose control in ASCVD patients with T2D

